Convergence of Yang-Mills-Higgs flow for twist Higgs pairs on Riemann surfaces  被引量:1

Convergence of Yang-Mills-Higgs flow for twist Higgs pairs on Riemann surfaces

在线阅读下载全文

作  者:ZHANG Wei 

机构地区:[1]Department of Mathematics, South China University of Technology

出  处:《Science China Mathematics》2014年第8期1657-1670,共14页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China(Grant Nos.11101393 and 11201447)

摘  要:We consider the gradient flow of the Yang-Mills-Higgs functional of twist Higgs pairs on a Hermitian vector bundle(E,H)over Riemann surface X.It is already known the gradient flow with initial data(A0,φ0)converges to a critical point(A∞,φ∞).Using a modified Chern-Weil type inequality,we prove that the limiting twist Higgs bundle(E,d′′A∞,φ∞)coincides with the graded twist Higgs bundle defined by the HarderNarasimhan-Seshadri filtration of the initial twist Higgs bundle(E,d′′A0,φ0),generalizing Wilkin’s results for untwist Higgs bundle.We consider the gradient flow of the Yang-Mills-Higgs functional of twist Higgs pairs on a Hermitian vector bundle(E, H) over Riemann surface X. It is already known the gradient flow with initial data(A0, φ0) converges to a critical point(A∞, φ∞). Using a modified Chern-Weil type inequality, we prove that the limiting twist Higgs bundle(E, d"A∞, φ∞) coincides with the graded twist Higgs bundle defined by the HarderNarasimhan-Seshadri filtration of the initial twist Higgs bundle(E, d"A0, φ0), generalizing Wilkin's results for untwist Higgs bundle.

关 键 词:twist Higgs bundle Yang-Mills-Higgs flow Harder-Narasimhan-Seshadri filtration Chern-Weil formula 

分 类 号:O186.12[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象