检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:HU Feng CHEN ZengJing ZHANG DeFei
机构地区:[1]School of Mathematical Sciences, Qufu Normal University [2]School of Mathematics, Shandong University [3]Department of Financial Engineering, Ajou University [4]Department of Mathematics, Honghe University
出 处:《Science China Mathematics》2014年第8期1687-1700,共14页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China (Grant Nos. 11301295 and 11171179);supported by National Natural Science Foundation of China (Grant Nos. 11231005 and 11171062);supported by National Natural Science Foundation of China (Grant No. 11301160);Natural Science Foundation of Yunnan Province of China (Grant No. 2013FZ116);Doctoral Program Foundation of Ministry of Education of China (Grant Nos. 20123705120005 and 20133705110002);Postdoctoral Science Foundation of China (Grant No. 2012M521301);Natural Science Foundation of Shandong Province of China (Grant Nos. ZR2012AQ009 and ZR2013AQ021);Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province;WCU (World Class University) Program of Korea Science and Engineering Foundation (Grant No. R31-20007)
摘 要:In this paper,we investigate the problem:How big are the increments of G-Brownian motion.We obtain the Csrg and R′ev′esz’s type theorem for the increments of G-Brownian motion.As applications of this result,we get the law of iterated logarithm and the Erds and R′enyi law of large numbers for G-Brownian motion.Furthermore,it turns out that our theorems are natural extensions of the classical results obtained by Csrg and R′ev′esz(1979).In this paper,we investigate the problem:How big are the increments of G-Brownian motion.We obtain the Csrg and R′ev′esz’s type theorem for the increments of G-Brownian motion.As applications of this result,we get the law of iterated logarithm and the Erds and R′enyi law of large numbers for G-Brownian motion.Furthermore,it turns out that our theorems are natural extensions of the classical results obtained by Csrg and R′ev′esz(1979).
关 键 词:sublinear expectation capacity G-normal distribution G-Brownian motion increments of GBrownian motion law of iterated logarithm
分 类 号:O211.67[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.9