检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江南大学物联网工程学院,江苏无锡214122
出 处:《航空学报》2014年第7期1992-1998,共7页Acta Aeronautica et Astronautica Sinica
摘 要:在无线传感器网络的定位问题中,通过移动目标与传感器之间的到达时差(TDOA)与到达频差(FDOA)测量量可以估计目标的位置和速度。但是,当传感器自身信息存在误差时,传统的定位方法将失去精确的定位效果。针对带有传感器误差的源定位问题,基于极大似然(ML)法获取一个封闭的近似解。提出了一种改进的近似极大似然(AML)算法,更新带有传感器误差的代价函数,不仅能实现实时定位,而且保证全局收敛。仿真结果表明,本文算法在存在传感器误差场景下依然可以达到克拉美-罗下限(CRLB),比已有的改进两步加权最小二乘(2-step WLS)法更有效。The position and velocity of a moving source can be estimated by utilizing the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements between moving targets and sensors in the localization of wireless sensor networks. The traditional localization algorithms will lose accurate positioning effect in the presence of sensor location errors. Based on the maximum likelihood (ML) function, a closed-form approximate solution can be obtained. This paper develops an improved approximate maximum likelihood (AML) algorithm by updating the cost function with sensor uncertain- ty, which can allow real-time implementation as well as global convergence. Simulation results show that the proposed algo- rithm can attain the Cramer-Rao lower bound the modified two-step weighted least squares (CRLB) in the presence of sensor location errors, and it performs better than (2-step WLS) approach.
关 键 词:传感器位置误差 近似极大似然算法 源定位 到达时差 到达频差
分 类 号:V247.5[航空宇航科学与技术—飞行器设计] TN971[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28