基于最大相关峭度反褶积的轴承故障诊断方法  被引量:21

Bearing Fault Diagnosis Based on Maximum Correlated Kurtosis Deconvolution

在线阅读下载全文

作  者:武兵[1,2] 贾峰[2] 熊晓燕[1,2] 

机构地区:[1]新型传感器与智能控制教育部重点实验室,太原030024 [2]太原理工大学机械电子工程研究所,太原030024

出  处:《振动.测试与诊断》2014年第3期570-575,597,共6页Journal of Vibration,Measurement & Diagnosis

基  金:国家自然科学基金资助项目(51035007);山西省自然科学基金资助项目(2012011046-10)

摘  要:针对滚动轴承的故障信号是周期性冲击信号这一特性,提出了最大相关峭度反褶积(maximum correlated kurtosis deconvolution,简称MCKD)与谱峭度(spectral kurtosis,简称SK)结合的滚动轴承早期故障诊断方法,即MCKD-SK法。利用MCKD方法可以有效提取滚动轴承早期故障信号中被噪声淹没的周期冲击成分,抑制信号中的噪声,实现信号降噪,提升原信号的峭度。利用SK方法可以选择合理频带,将信号中的低频信息从高频信息中解调出来。通过仿真与实际监测数据的分析和验证,证明MCKD-SK方法可以准确有效地诊断滚动轴承的早期故障,可用于滚动轴承早期故障的在线监测。According to the view that the rolling bearing fault signal is a periodic pulsing signal,a method based on maximum correlated kurtosis deconvolution(MCKD)and spectral kurtosis(SK)called the MCKD-SK method is proposed in order to diagnose early faults of rolling bearing.This method can effectively suppress noise in the signal in order to extract the bearing early fault signal from the signal submerged by noise and improve the kurtosis of the original signal.The SK method is then used to select a reasonable frequency band and demodulate the low frequency information from the high frequency band.Through simulation and actual monitoring,as well as data analysis and validation,the MCKD-SK method has being shown to accurately and effectively diagnose early faults of rolling bearing.This method is also suitable for on-line monitoring early motor bearing faults.

关 键 词:最大相关峭度反褶积 谱峭度 解调分析 早期故障诊断 

分 类 号:TH133.3[机械工程—机械制造及自动化] TP206.3[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象