基于PCA和高斯混合模型的小麦病害彩色图像分割  被引量:23

Segmentation of Wheat Rust Lesion Image Using PCA and Gaussian Mix Model

在线阅读下载全文

作  者:田杰[1,2] 韩冬[3] 胡秋霞[2] 马孝义[1,4] 

机构地区:[1]西北农林科技大学机械与电子工程学院,陕西杨凌712100 [2]西北农林科技大学信息工程学院,陕西杨凌712100 [3]俄克拉荷马大学工程学院,淘沙74135 [4]西北农林科技大学水利与建筑工程学院,陕西杨凌712100

出  处:《农业机械学报》2014年第7期267-271,共5页Transactions of the Chinese Society for Agricultural Machinery

基  金:国家自然科学基金资助项目(61003151);'十二五'国家科技支撑计划资助项目(2012BAD08B01);中央高校基本科研业务费专项资金资助项目(2014YB069)

摘  要:为了提高高斯混合模型对小麦病叶的分割精度,减少分割时间,提出了一种基于PCA和高斯混合模型的分割方法。首先充分利用图像的颜色信息,将图像多个颜色通道进行主成分分析计算,获得3个主要颜色通道;在此基础上,将图像分成多个分块,根据其像素平均值排序,各取前后多个分块组成新的像素集合进行高斯混合模型运算;最后遍历整个图像,将每个像素归类到已求出的高斯模型上得出分割结果。通过对小麦锈病图像的分割试验表明,该方法的错分像素率分别比高斯混合模型、K-means等传统分割方法低5.46和13.44个百分点。In order to improve the segmentation accuracy and reduce the segmentation running time of Gaussian mixture model used on wheat lesion images, a segmentation method based on PCA and Gaussian mixture model was proposed. Firstly, in order to completely use the color information of an image, three primary color channels of the image were obtained through the principal component analysis (PCA) method from R, G, B or H, S, V color channels of this image. Secondly, the image was divided into many blocks, which were then sorted according to their mean pixel values. After sorting, those blocks lying in the front and the rear were selected to comprise a new pixel set by the Gaussian mixture model, and further, the corresponding Gaussian model parameters were obtained. Finally, the proposed method traveled all pixels in the image and classified each pixel into the corresponding Gaussian model category. Experimental results show that the proposed method has gained better promotions in segmentation error rate and running time compared with the traditional segmentation method and is effective for wheat leaf rust lesion segmentation.

关 键 词:小麦锈病 图像分块 主成分分析 高斯混合模型 

分 类 号:S435.121.43[农业科学—农业昆虫与害虫防治] TP391.41[农业科学—植物保护]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象