检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:秦凯伦[1] 郭福涛[2] 邸雪颖[1] 宋禹辉[2] 孙龙[1] 吴瑶
机构地区:[1]东北林业大学,哈尔滨150040 [2]福建农林大学 [3]黑龙江省林业科学研究所
出 处:《东北林业大学学报》2014年第7期60-64,116,共6页Journal of Northeast Forestry University
基 金:中央高校基本科研业务费专项资金项目资助(2572014BA14);"十二五"农村领域国家科技计划课题(2011BAD08B01-03)资助
摘 要:为了选取最优模型来判别对林火面积有显著影响的气象因子,应用Gamma广义线性模型和多元线性回归模型在年尺度上对大兴安岭塔河地区林火面积和当年及前一年防火期气象因子的关系进行了分析。应用AIC、BIC和RMSE等统计检验方法,对Gamma模型与传统多元线性回归模型进行拟合度比较。结果显示:Gamma全模型对林火面积与当年及前一年气象因子的拟合均要优于相对应的多元线性回归模型,且模型中自变量因子的显著性水平较高。根据最优模型选择标准,对Gamma全模型自变量中的不显著因子进行逐一删除,并获得最优Gamma模型(模型中的气象因子均与林火显著相关)从而确定影响塔河地区林火面积的主要决策气象因子。We applied Gamma model (a generalized linear regression model) and multiple linear regression model to analyze the relationship between burned area and weather factors including the current-year and the one-year-before weather factor under year scale to select the best model for identifying the main weather driving factors on forest burned area. We made a comparison between Gamma and multiple linear regression model based on Arc, BIC, and RMSE test. Gamma model was superior over the multiple linear regression model on both "current-year" and "one-year-before" data fitting. The significance of parameters was improved in Gamma models compared to the corresponding muhiple linear regression model. We chose the best model according to the Best Model Selection Standard to identify the main weather driving factors on local fire burned area in Tahe region.
关 键 词:林火面积 Gamma模型 广义线性模型 多元线性回归 气象因子
分 类 号:S762.2[农业科学—森林保护学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.225.92.18