Multiplicity fluctuation analysis of target residues in nucleusemulsion collisions at a few hundred MeV/nucleon  

Multiplicity fluctuation analysis of target residues in nucleusemulsion collisions at a few hundred MeV/nucleon

在线阅读下载全文

作  者:张东海 陈艳玲 王国蓉 李王东 王青 姚继杰 周建国 郑素华 胥利玲 苗惠锋 王鹏 

机构地区:[1]Institute of Modern Physics, Shanxi Normal University

出  处:《Chinese Physics C》2014年第7期14-17,共4页中国物理C(英文版)

基  金:Supported by National Science Foundation of China(11075100),Natural Science Foundation of Shanxi Province,China(20110110012);Shanxi Provincial Foundation for Returned Overseas Chinese Scholars,China(2011-058)

摘  要:Multiplicity fluctuation of the target evaporated fragments emitted in 290 MeV/u 12C-AgBr, 400 MeV/u 12C-AgBr, 400 MeV/u 20Ne-AgBr and 500 MeV/u 56Fe-AgBr interactions is investigated using the scaled factorial moment method in two-dimensional normal phase space and cumulative variable space, respectively. It is found that in normal phase space the scaled factorial moment (ln(Fq)) increases linearly with the increase of the divided number of phase space (lnM) for lower q-value and increases linearly with the increase of lnM, and then becomes saturated or decreased for a higher q-value. In cumulative variable space ln(Fq) decreases linearly with increase of lnM. This indicates that no evidence of non-statistical multiplicity fluctuation is observed in our data sets. So, any fluctuation indicated in the results of normal variable space analysis is totally caused by the non-uniformity of the single-particle density distribution.Multiplicity fluctuation of the target evaporated fragments emitted in 290 MeV/u 12C-AgBr, 400 MeV/u 12C-AgBr, 400 MeV/u 20Ne-AgBr and 500 MeV/u 56Fe-AgBr interactions is investigated using the scaled factorial moment method in two-dimensional normal phase space and cumulative variable space, respectively. It is found that in normal phase space the scaled factorial moment (ln(Fq)) increases linearly with the increase of the divided number of phase space (lnM) for lower q-value and increases linearly with the increase of lnM, and then becomes saturated or decreased for a higher q-value. In cumulative variable space ln(Fq) decreases linearly with increase of lnM. This indicates that no evidence of non-statistical multiplicity fluctuation is observed in our data sets. So, any fluctuation indicated in the results of normal variable space analysis is totally caused by the non-uniformity of the single-particle density distribution.

关 键 词:heavy-ion collisions target fragmentation non-statistical fluctuation nuclear emulsion 

分 类 号:O571[理学—粒子物理与原子核物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象