检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]辽宁科技大学电子与信息工程学院,辽宁鞍山114051
出 处:《计算机工程》2014年第7期38-42,共5页Computer Engineering
基 金:国家自然科学基金资助项目(60874017);鞍山市科技计划基金资助项目
摘 要:针对蒙特卡洛盒(MCB)移动定位算法中存在的样本点退化问题,提出一种改进的蒙特卡洛盒(IMCB)定位算法,将其应用于无线传感器网络节点定位中。在MCB算法的基础上,通过分析当前时刻定位结果、节点距离以及相对位置信息,获得下一时刻在样本盒不同区域的采样概率,使样本点尽可能落在后验概率较大的区域内,从而解决MCB算法样本点退化导致定位精度降低的问题。仿真实验结果表明,在相同条件下,与MCB、MCL算法相比,IMCB算法的平均定位精度提高约14%,平均定位能耗降低约17%。Due to the problem of sample degeneration in Monte-Carlo Box(MCB) mobile localization algorithm, a new localization algorithm named Improved Monte-Carlo Boxed(IMCB) is proposed, which is applied to node localization of Wireless Sensor Network(WSN). Based on the MCB algorithm, through analyzing the localization results of current time, distance between nodes and the information of node relative position to obtain the sampling probability of different regional of sample box for next time, the sample points can fall in the area where the posterior probability is large as much as possible, therefore the problem of low accuracy caused by sample degeneration in MCB algorithm is solved effectively. Simulation results show that, under the same conditions, the average localization accuracy is improved by about 14%, and the average energy consumption for localization is reduced by about 17% by comparing with the MCB, MCL algorithm.
关 键 词:无线传感器网络 移动定位 蒙特卡洛盒 采样概率 样本点退化 接收信号强度指示
分 类 号:TP393.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222