检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄锦旺[1] 李广明[2] 冯久超[1] 晋建秀[1]
机构地区:[1]华南理工大学电子与信息学院,广州510641 [2]东莞理工学院计算机学院,东莞523808
出 处:《物理学报》2014年第14期77-83,共7页Acta Physica Sinica
基 金:国家自然科学基金(批准号:60872123;61101014);广东省高等学校高层次人才项目基金(批准号:N9101070);中央高校基本科研基金(批准号:2012ZM0025)资助的课题~~
摘 要:将无线传感器网络节点观测区域中的一个混沌信号发送到融合中心,进行信号重构.由于节点的通信带宽受限,信号传输之前需要进行量化,给信号带来量化噪声,使得信号重构工作变得更为棘手.本文提出用平方根容积卡尔曼滤波器对融合中心收集的信号进行重构.首先估计观测信号的概率密度函数,使用最优量化器量化观测信号,在有限的量化比特数下,取得最优的信号量化性能.平方根容积卡尔曼滤波器相对无先导卡尔曼算法具有较少的求容积分点,因此具有计算量小的优点,同时迭代过程采用传递误差矩阵的平方根矩阵,保证迭代过程的稳定性和提高数据估计精度.仿真结果表明,该算法能够有效和快速地重构观测信号,并且比基于无先导卡尔曼滤波的算法更快.A chaotic signal in an observation area of network nodes is sent to a fusion center for reconstruction. As the communication bandwidth is limited, the signal must be quantified before sending to the fusion center, which will add quantization noise to the observed signal, which makes the signal reconstruction more difficult. A chaotic signal reconstruction algorithm is proposed in this paper based on square-root cubature Kalman filter. Firstly the probability density function of the observed signal is estimated, and then the optimal quantizer is used to quantify the observed signal. Under the limited budget of quantization bits, the best performance can be achieved. Compared with the unscented Kalman filter counterpart, our algorithm has fewer cubature points and has the merit of small computation load; meanwhile, itusesthesquarerootof errorvarianceforiteration, this willbe morestableand accuratewhen iterating for parameter estimation. Simulation results show that the algorithm can reconstruct the observed signal quickly and effectively, with consuming less computation time and being more accurate than the one based on unscented Kalman filter.
分 类 号:O415.5[理学—理论物理] TP212.9[理学—物理] TN929.5[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.124