检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京师范大学物理科学与技术学院,南京210023
出 处:《物理学报》2014年第14期118-124,共7页Acta Physica Sinica
摘 要:研究了二维Sinai台球系统的经典与量子的对应关系,运用定态展开法和Gutzwiller的周期轨道理论对Sinai台球系统的态密度经傅里叶变换得到的量子长度谱进行分析,并把量子长度谱中峰的位置与其所对应的经典体系的周期轨道长度做对比,发现两者之间存在很好的对应关系.观察到了一些量子态局域在短周期轨道附近形成量子scarred态或量子superscarred态.还研究了同心与非同心Sinai台球系统的能级最近邻间距分布,发现同心Sinai台球系统是近可积的,非同心Sinai台球系统在θ=3π/8下,随两中心间距离的增加,能级最近邻间距分布将由近可积向维格那分布过渡.We study the classical and quantum correspondence for a two-dimensional Sinai billiard system. By using the Stationary state expansion method and Gutzwiller’s periodic orbit theory, we analyze the quantum length spectrum obtained through the Fourier transformation of the quantum density of state for the Sinai billiard system, and by comparing the peak position with the length of the classical periodic orbit we find their excellent correspondence. We observe that some quantum states are localized near some short period orbits, forming the quantum scarred states or superscarred states. In this paper we also investigate the nearest-neighbor spacing distribution of levels for both concentric and nonconcentric Sinai billiard systems, and find that the concentric Sinai billiard system is nearintegrable,and for the nonconcentric Sinai billiard system with ? = 3π/8 its nearest-neighbor spacing distribution of levels transits from nearintegrable to the Wigner distribution as the distance between the two centers increases.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38