检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:白响恩[1] 张浩[1] 张晓东[2] 肖英杰[1] 陈亮[1]
机构地区:[1]上海海事大学航运仿真技术教育部工程研究中心,上海201306 [2]上海海事局,上海200086
出 处:《计算机工程与应用》2014年第14期251-254,共4页Computer Engineering and Applications
基 金:国家自然科学基金(No.51149001)
摘 要:影响交通流变化的因素众多,为改进传统的船舶交通流预测精度不高,一种结合粗糙集和支持向量回归智能算法的交通流预测模型提出,通过ROSETTA软件进行属性约简预处理,筛选出影响交通流变化的关键影响因素,剔除冗余信息。筛选结果显示外轮进出艘次、对外贸易总额、港口GDP、集装箱标准箱、港口货物吞吐量为输入变量,运用Libsvm软件构建基于遗传算法参数寻优的支持向量回归模型预测2008年和2009年的交通流。算例结果表明,与BP神经网络和SVM模型相比,组合预测模型是有效和实用的预测工具。Many factors contribute to vessel’s traffic flow, to improve the forecasting accuracy of the traditional method, an integrated model of Rough Sets Theory(RST), Genetic Algorithm(GA) and Support Vector Regression(SVR), RST-GA-SVR, for traffic volume forecasting is proposed. ROSETTA software is used in data preprocessing, through the rough set attribute reduction algorithm to find the core impact factor of volume and remove redundant information. The results reveal the No. of in-and-out foreign vessels, foreign trade volume, port GDP, container TEU, port cargo throughput as input vector. GA is used for parameters selection in SVR model and the trained LIBSVM model is used to forecast the volume in 2008 and 2009. Compared with BP neural network and SVM models, empirical results show that RST-GA-SVR model is an efficient and practical tool for vessel volume forecasting.
关 键 词:船舶交通流 粗糙集 遗传算法 支持向量回归 组合预测
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.116.170