检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学精密仪器系精密测试技术及仪器国家重点实验室,北京100084
出 处:《仪器仪表学报》2014年第7期1459-1465,共7页Chinese Journal of Scientific Instrument
基 金:国家自然科学基金(61272428);教育部博士点基金(20120002110067)资助项目
摘 要:电能谐波是评估智能用电网络电能质量的重要指标之一。采用无线网络实现智能用电中的谐波测量具有良好的扩展性和鲁样性,但对电能测量节点间的同步精度提出更高要求,因此测量网络下节点间的快速、高精度同步对实现准确谐波测量具有重要意义。面向智能用电网络下谐波测量,基于鲁棒性、扩展性好的脉冲耦合振荡(PCO)机制,提出一种针对测量网络节点密度自适应的快速网络同步方法。通过理论分析和实验研究网络参数和内置同步模型对PCO同步速率的影响。在智能用电测量网络下验证提出的同步方法,结果表明自适应优化模型在不同节点密度下相比于传统三角同步速率提高,平均同步误差降低30.1%,提高了智能网络下的谐波测量精度,优化了智能用电网络的电能质量。Electrical harmonic is a key character of power quality evaluation in smart power utilization network. Adopting distributed wireless sensing networks in harmonic metering in smart power utilization has good expandability and robustness, where high precision synchronization of sensing nodes is required. Thus, fast, accurate synchronization among sensors is significant for high confidence harmonic metering. To realize reliable harmonic measurement under smart power utilization network, this paper proposes a self-adaptive synchronization method to node density based on pulse-coupled oscillator (PCO) mechanism. Theoretical analysis and experiment study were carried out to identify the factors that affect the PCO synchronization rate. Experiments under smart power utilization sensing network were conducted to verify the proposed self-adaptive method, the results show that compared with traditional triangle synchronization method, the self-adaptive optimization model has higher synchronization rate under different node density, and the average synchronization error is reduced by 30. 1%. The harmonic measurement accuracy is improved; the electrical power quality is optimized in smart power utilization network.
关 键 词:智能用电网络 谐波测量 脉冲耦合振荡 自适应同步
分 类 号:TN991.6[电子电信—信号与信息处理] TH7[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31