检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:樊荣[1] 徐保根 万义和 汤四龙 文飞[1] 万群[1]
机构地区:[1]电子科技大学电子工程学院,成都611731 [2]同方电子科技有限公司,江西九江332007
出 处:《电子科技大学学报》2014年第4期514-518,共5页Journal of University of Electronic Science and Technology of China
基 金:国家自然科学基金(61172140)
摘 要:基于特征分解的子空间类测向算法均要知道信源个数,但在小快拍数、低信噪比,且信源间的信号强度差异明显的场合中,传统的AIC信息准则和MDL准则均不能准确判断信源个数。这直接恶化了基于特征分解类算法(如MUSIC法)的测向性能。针对该问题,提出了一种利用信源先验特征的混合测向算法。该算法既利用了信源在角度上呈稀疏分布的信息提高了信源数判决的准确性,也利用了信源的非圆特性改进了测向性能。计算机仿真证实了该方法的正确性。The number of sources must be known for eigen-decomposition subspace direction finding algorithms. However, in small number of snapshots and low signal-to-noise ratio (SNR) case, and when different signal strength between sources are occurred, both conventional AIC information criterion and MDL criterion are not able to judge the source number correctly and the performance of eigen-decomposition subspace direction finding algorithms (such as MUSIC method) deteriorates. To solve the problem, a hybrid direction finding approach using priori information of sources is proposed. With the proposed approach, the number of sources can be determined by using the fact that sources are sparse in angle domain. Furthermore, with the priori information that sources are non-circular, the direction finding performance is improved. Finally, computer simulations illustrate correction of the proposed approach..
关 键 词:AIC信息准则 DOA估计 MDL准则 非圆信号 稀疏信号重建
分 类 号:TN95[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49