土壤水分特性曲线MV和AP模型应用研究——基于土壤颗粒分布曲线  

The Application of MV and AP Model to Predict Soil Moisture Characteristic Curves from Particle-size Distribution Curves

在线阅读下载全文

作  者:胡顺[1] 史良胜[1] 黄绪武 

机构地区:[1]武汉大学水利水电学院水资源与水电工程科学国家重点实验室,武汉430072

出  处:《中国农村水利水电》2014年第6期1-4,8,共5页China Rural Water and Hydropower

基  金:国家自然科学基金项目(51179132);全国博士学位论文作者专项资金资助项目(201248)

摘  要:土壤水分特性曲线是土壤的基本性质,它的直接方法测量非常冗长耗时,间接方法测量成为重要途径之一。多种基于土壤颗粒分布曲线的预测模型因此得以提出,但各模型的实际应用效果仍缺乏充分检验。针对江苏常州水稻土等3种土样,基于土壤颗粒分布曲线,利用MV模型和AP模型预测土壤水分特性曲线;采用van Genuchten-Mualem公式,拟合得到了土壤水分特性曲线的基本参数值;通过对模型预测值和实测值的方差和AIC标准检验,对比了MV模型和AP模型,讨论两个模型在粉、沙壤土中的应用效果。研究表明:AP和MV模型均可以较好地预测粉、沙壤土两种土的土壤水分特性参数;两种模型在低负压时的预测效果优于高负压时;AP模型随着土壤黏粒含量的增加预测效果逐渐变差,MV模型与土壤黏粒含量之间无明显关系;对比两模型,AP模型优于MV模型;MV模型作为一种不含经验参数的简易模型,其预测精度仍有待改进。Soil moisture characteristic curve (SMCC) is a fundamental soil property and its direct measurement is tedious and timeconsuming.Therefore,various indirect methods are developed to predict SMCC from the angle of particle-size distribution (PSD).This study employs MV and AP model to predict SMCC from PSD.The parameters of SMCC are estimated by using van GenuchtenMualem model.The estimated soil parameters from MV and AP models and the estimated parameters from measured SMCC are examined by SSE and AIC indicator.The predicted soil water contents from two models are compared with the measured value.The results show that Both AP model and MV model are able to obtain the soil parameters in silty loam and sandy loam; At the low-suction head section,two models produces better results than at the high-suction head section; With the increase in clay particles,the performance of AP model deteriorates,but MV model seems not; Compared with the two models,AP model generally works better than MV model.Although MV model is a simple model without any empirical parameter,its application to real soil requires further research.

关 键 词:土壤颗粒分布曲线 土壤水分特性曲线 MV模型 AP模型 

分 类 号:S152.7[农业科学—土壤学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象