检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Nonlinear Scientific Research Center,Faculty of Science,Jiangsu University
出 处:《Chinese Physics B》2014年第8期205-210,共6页中国物理B(英文版)
基 金:Project supported by the National Natural Science Foundation of China(Grant No.11101191)
摘 要:In this paper, we give a detailed discussion about the dynamical behaviors of compact solitary waves subjected to the periodic perturbation. By using the phase portrait theory, we find one of the nonsmooth solitary waves of the mKdV equation, namely, a compact solitary wave, to be a weak solution, which can be proved. It is shown that the compact solitary wave easily turns chaotic from the Melnikov theory. We focus on the sufficient conditions by keeping the system stable through selecting a suitable controller. Furthermore, we discuss the chaotic threshold for a perturbed system. Numerical simulations including chaotic thresholds, bifurcation diagrams, the maximum Lyapunov exponents, and phase portraits demonstrate that there exists a special frequency which has a great influence on our system; with the increase of the controller strength, chaos disappears in the perturbed system. But if the controller strength is sufficiently large, the solitary wave vibrates violently.In this paper, we give a detailed discussion about the dynamical behaviors of compact solitary waves subjected to the periodic perturbation. By using the phase portrait theory, we find one of the nonsmooth solitary waves of the mKdV equation, namely, a compact solitary wave, to be a weak solution, which can be proved. It is shown that the compact solitary wave easily turns chaotic from the Melnikov theory. We focus on the sufficient conditions by keeping the system stable through selecting a suitable controller. Furthermore, we discuss the chaotic threshold for a perturbed system. Numerical simulations including chaotic thresholds, bifurcation diagrams, the maximum Lyapunov exponents, and phase portraits demonstrate that there exists a special frequency which has a great influence on our system; with the increase of the controller strength, chaos disappears in the perturbed system. But if the controller strength is sufficiently large, the solitary wave vibrates violently.
关 键 词:Melnikov method compacted solitary waves control threshold
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222