Multi-symplectic method for the coupled Schrdinger–KdV equations  

Multi-symplectic method for the coupled Schrdinger–KdV equations

在线阅读下载全文

作  者:张弘 宋松和 周炜恩 陈绪栋 

机构地区:[1]Department of Mathematics and System Science, College of Science, National University of Defense Technology [2]State Key Laboratory of High Performance Computing, National University of Defense Technology

出  处:《Chinese Physics B》2014年第8期226-232,共7页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant No.91130013);the Open Foundation of State Key Laboratory of High Performance Computing

摘  要:In this paper, we present a multi-symplectic Hamiltonian formulation of the coupled Schrtidinger-KdV equations (CS'KE) with periodic boundary conditions. Then we develop a novel multi-symplectic Fourier pseudospectral (MSFP) scheme for the CSKE. In numerical experiments, we compare the MSFP method with the Crank-Nicholson (CN) method. Our results show high accuracy, effectiveness, and good ability of conserving the invariants of the MSFP method.In this paper, we present a multi-symplectic Hamiltonian formulation of the coupled Schrtidinger-KdV equations (CS'KE) with periodic boundary conditions. Then we develop a novel multi-symplectic Fourier pseudospectral (MSFP) scheme for the CSKE. In numerical experiments, we compare the MSFP method with the Crank-Nicholson (CN) method. Our results show high accuracy, effectiveness, and good ability of conserving the invariants of the MSFP method.

关 键 词:coupled Schr/Sdinger-KdV equations MULTI-SYMPLECTIC Fourier pseudospectral method 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象