Spin-excited states and rectification in an organic spin rectifier  

Spin-excited states and rectification in an organic spin rectifier

在线阅读下载全文

作  者:左梦莹 胡贵超 李营 任俊峰 王传奎 

机构地区:[1]College of Physics and Electronics, Shandong Normal University

出  处:《Chinese Physics B》2014年第8期495-501,共7页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant Nos.10904084,10904083,and 11374195);the Excellent Young Scholars Research Fund of Shandong Normal University

摘  要:Spin-excited states in an asymmetric magnetic organic co-oligomer diode are investigated theoretically. The results demonstrate that the structural asymmetry of the co-oligomer is modulated by the spin-excited states, which is embodied in the wave functions of the eigenstates as well as the spin density wave. By calculating the transport property, a robust spin-current rectification concomitant with a charge-current rectification is observed in all spin-excited states. However, the current through the diode is suppressed distinctly by the spin-excited states, while the rectification ratios may be reduced or enhanced depending on the bias and the excited spins. The intrinsic mechanism is analyzed from the spin-dependent trans- mission combined with the change of molecular eigenstates under bias. Finally, the temperature-induced spin excitation is simulated. Significant rectification behavior is obtained even at room temperature.Spin-excited states in an asymmetric magnetic organic co-oligomer diode are investigated theoretically. The results demonstrate that the structural asymmetry of the co-oligomer is modulated by the spin-excited states, which is embodied in the wave functions of the eigenstates as well as the spin density wave. By calculating the transport property, a robust spin-current rectification concomitant with a charge-current rectification is observed in all spin-excited states. However, the current through the diode is suppressed distinctly by the spin-excited states, while the rectification ratios may be reduced or enhanced depending on the bias and the excited spins. The intrinsic mechanism is analyzed from the spin-dependent trans- mission combined with the change of molecular eigenstates under bias. Finally, the temperature-induced spin excitation is simulated. Significant rectification behavior is obtained even at room temperature.

关 键 词:organic spintronics organic ferromagnet RECTIFICATION spin-excited state 

分 类 号:TN31[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象