机构地区:[1]College of Physics and Engineering,Qufu Normal University
出 处:《Chinese Physics B》2014年第8期527-536,共10页中国物理B(英文版)
基 金:Project supported by the National Natural Science Foundation of China(Grant Nos.11302118 and 11275112);the Natural Science Foundation of Shandong Province of China(Grant Nos.ZR2013AQ015 and ZR2011AM018);the Postdoctoral Science Foundation of Qufu Normal University(Grant No.BSQD2012053)
摘 要:The dynamical properties of one-dimensional random transverse Ising model (RTIM) with a double-Gaussian disorder is investigated by the recursion method. Based on the first twelve recurrences derived analytically, the spin autocorrelation function (SAF) and associated spectral density at high temperature were obtained numerically. Our results indicate that when the standard deviation σg (or OrB) of the exchange couplings Ji (or the random transverse fields Bi) is small, no long-time tail appears in the SAE The spin system undergoes a crossover from a central-peak behavior to a collectivemode behavior, which is the dynamical characteristics of RTIM with the bimodal disorder. However, when σJ (or σB) is large enough, the system exhibits similar dynamics behaviors to those of the RTIM with the Gaussian disorder, i.e., the system exhibits an enhanced central-peak behavior for large σJ or a disordered behavior for large σB. In this instance, SAFs exhibit a similar long-time tail, i.e., C(t) ~ t ^-2 for large t. Similar properties are obtained when Ji (or Bi) satisfy the double-exponential distribution or the double-uniform distribution. Besides, when both the standard deviations and the mean values of the exchange couplings are small, the effects of the Gaussian random bonds may drive the system undergo two crossovers from a triplet state to a doublet state, and then to a collective-mode state.The dynamical properties of one-dimensional random transverse Ising model (RTIM) with a double-Gaussian disorder is investigated by the recursion method. Based on the first twelve recurrences derived analytically, the spin autocorrelation function (SAF) and associated spectral density at high temperature were obtained numerically. Our results indicate that when the standard deviation σg (or OrB) of the exchange couplings Ji (or the random transverse fields Bi) is small, no long-time tail appears in the SAE The spin system undergoes a crossover from a central-peak behavior to a collectivemode behavior, which is the dynamical characteristics of RTIM with the bimodal disorder. However, when σJ (or σB) is large enough, the system exhibits similar dynamics behaviors to those of the RTIM with the Gaussian disorder, i.e., the system exhibits an enhanced central-peak behavior for large σJ or a disordered behavior for large σB. In this instance, SAFs exhibit a similar long-time tail, i.e., C(t) ~ t ^-2 for large t. Similar properties are obtained when Ji (or Bi) satisfy the double-exponential distribution or the double-uniform distribution. Besides, when both the standard deviations and the mean values of the exchange couplings are small, the effects of the Gaussian random bonds may drive the system undergo two crossovers from a triplet state to a doublet state, and then to a collective-mode state.
关 键 词:random transverse Ising model spin autocorrelation function spectral density long-time tail
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...