检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]乐山师范学院智能信息处理及应用实验室,四川乐山614000 [2]乐山师范学院计算机科学学院,四川乐山614000
出 处:《西南师范大学学报(自然科学版)》2014年第7期108-114,共7页Journal of Southwest China Normal University(Natural Science Edition)
摘 要:现有主动学习主要着眼于对单个域训练方法的研究,不同域有不同的特征,同时也存在一些隐含的共性.如何从多个域中选择合适数据样本成为多域学习中减少人工标注工作量的关键.本文提出了一个新颖的主动多域学习框架,该框架充分考虑了重复信息,并可从多个域中选择合适的数据样本.该框架首先找到一个包含不同域间隐含共性的共享子空间,然后将所有数据样本分解为公共域部分和个性域部分,其中公共域部分可视为域间的重复信息,该部分在查询时需要被考虑到.最后,将主动多域学习方法与最新的主动学习方法的性能进行了比对,实验结果表明,本文提出的主动多域学习方法在减少人工标注工作量方面有显著作用.The existing active learning methods are mainly focus on training a single domain.Different domains have different characteristics,but there are some implied commonalities.Therefore,how to choose the right data samples from multiple domains becomes the key to reduce the workload of manual tagging in multi-domain learning.This paper presents a novel multi-domain active learning framework.The framework fully considered the duplicate information and selected the appropriate data samples from multiple domains.Firstly,in this framework,a sharing subspace containing implicit commonalities between different domains is found;Then,all the data samples are broken down into the individual domain portions and the public domain portions,and the public domain portions can be considered as the duplicate information between domains which needs to be considered in the query.Finally,the multi-domain active learning methods and the latest active learning methods are compared in terms of performance.The experimental results show that the proposed multi-domain active learning methods are more marked effect in reducing the workload of manual tagging.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175