检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电光与控制》2014年第8期47-49,共3页Electronics Optics & Control
基 金:全国高校博士点基金(20116102110026)
摘 要:目标识别问题中存在大量不确定信息,利用BN可以对不确定信息及其相互关系进行学习与推理。但是,目标识别问题的样本量较小,在参数学习过程中,常因观测数据不足产生误差,需要引入单调性信息等专家经验,针对这一问题,提出最小元算法。首先,利用最小元表达单调性信息,将其转化为参数学习可以直接利用的先验信息;然后,基于保序回归思想,对参数学习结果进行优化,消除误差,得到相对准确的网络参数。以空中目标识别为仿真背景,与最小子集算法比较,验证了该算法在准确度与复杂度等方面的优势。There is a lot of uncertain information in target recognition which can be learned and reasoned by the use of BN.However,the target recognition problem is of small sample size,and there are often some errors due to lack of observational data during parameter learning .Therefore,it is needed to introduce monotonic expertise .Focusing on the above problem,the minimum unit algorithm was proposed .By use of the minimum unit,the monotonic information was translated into priori information,which could be directly used in parameter learning .Then,based on the thinking of isotonic regression,the parameter learning outcomes were optimized and the errors were eliminated .The relatively accurate network parameters were obtained.On the background of aerial target recognition,the advantages of minimum unit algorithm compared with the minimum lower sets algorithm in accuracy and complexity are illustrated .
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28