一种自适应交替的差分混合蛙跳优化算法  被引量:1

An Adaptive Alternating Optimization Algorithm of Differential Shuffled Frog Leaping

在线阅读下载全文

作  者:胥枫 张桂珠[1] 赵芳[1] 吴德龙[1] 

机构地区:[1]江南大学物联网工程学院,江苏无锡214122

出  处:《计算机工程》2014年第8期138-142,共5页Computer Engineering

基  金:国家自然科学基金资助项目(61170120);江苏省自然科学基金资助项目(BK2011147)

摘  要:针对混合蛙跳算法在解决高维优化问题时易早熟收敛、求解精度低等问题,提出一种自适应交替的差分混合蛙跳优化算法。采用粒子群算法在短时间内产生一组满足约束条件的初始解,以提高初始解的质量。在此基础上,利用差分进化算法全局搜索能力强、种群多样性好等优点,设计一种自适应选择机制,动态地交替使用混合蛙跳算法和差分进化算法,使两者有机融合、优势互补。对6个经典函数的仿真测试结果表明,该算法可以丰富粒子的多样性,使算法前期和后期都具有较好的寻优能力,且寻优速率、求解精度、稳定性都优于混合蛙跳算法、差分进化算法和差分混合蛙跳算法。Because of the problems of Shuffled Frog Leaping Algorithm (SFLA) such as premature convergence and low accuracy for hard high-dimensional optimization problems,an adaptive alternating optimization algorithm of differential shuffled frog leaping called ADE-SFLA is presented.In order to improve the quality of the initial solution,this algorithm uses Particle Swarm Optimization (PSO) to generate a group of initial solution that satisfies the constraints.On this basics,it draws on that Differential Evolution (DE) algorithm has strong global search capability,better population diversity,etc.It designs an adaptive selection mechanism to dynamically alternate SFLA and DE,and builds a win-win relationship between them and complementary advantages.Six classic functions of the simulation results show that the algorithm not only can enrich the diversity of particle,but also can make the algorithm have a better pre-and postoptimization ability.Its optimization rate,solution accuracy,stability are better than SFLA and DE,and are also better than the differential SFLA which is compared.

关 键 词:群智能算法 混合蛙跳算法 差分进化算法 优势互补 多样性 全局优化 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象