On the Blocking Flow Patterns in the Euro–Atlantic Sector:A Simple Model Study  

On the Blocking Flow Patterns in the Euro–Atlantic Sector:A Simple Model Study

在线阅读下载全文

作  者:LUO Dehai YAO Yao 

机构地区:[1]Physical Oceanography Laboratory, College of Physical and Environmental Oceanography,Ocean University of China [2]Key Laboratory of Regional Climate-Environment for East Asia, Chinese Academy of Science

出  处:《Advances in Atmospheric Sciences》2014年第5期1181-1196,共16页大气科学进展(英文版)

基  金:the support from the National Science Foundation of China(Grant No.41375067); "One-Hundred Talents Plan"of the Chinese Academy of Sciences(Grant No.Y163011)

摘  要:The flow patterns of Euro-Atlantic blocking events in winter are investigated by dividing the sector into three sub- regions: 60°-30°W (Greenland region); 20°W-30°E [eastern Atlantic-Europe (EAE) region]; and 50°-90°E (Ural region). It is shown that blocking events in winter are extremely frequent in the three sub-regions. Composite 500-mb geopotential height fields for intense and long-lived blocking events demonstrate that the blocking fields over Greenland and Ural regions exhibit southwest-northeast (SW-NE) and southeast-northwest (SE-NW) oriented dipole-type patterns, respectively, while the composite field over the EAE region exhibits an Ω-type pattern. The type of composite blocking pattern seems to be related to the position of the blocking region relative to the positive center of the climatological stationary wave (CSW) anomaly existing near 10°W. The physical cause of why there are different composite blocking types in the three sub-regions is identified using a nonlinear multiscale interaction model. It is found that when the blocking event is in almost the same position as the positive CSW anomaly, the planetary-scale field can exhibit an Ω-type pattern due to the enhanced positive CSW anomaly. Neverthe- less, a SW-NE (SE-NW) oriented dipole-type block can occur due to the reduced positive CSW anomaly as it is farther in the west (east) of the positive CSW anomaly. The total fields of blocking in the three regions may exhibit a meandering flow comprised of several isolated anticyclonic and cyclonic vortices, which resembles the Berggren-Bolin-Rossby meandering jet type.The flow patterns of Euro-Atlantic blocking events in winter are investigated by dividing the sector into three sub- regions: 60°-30°W (Greenland region); 20°W-30°E [eastern Atlantic-Europe (EAE) region]; and 50°-90°E (Ural region). It is shown that blocking events in winter are extremely frequent in the three sub-regions. Composite 500-mb geopotential height fields for intense and long-lived blocking events demonstrate that the blocking fields over Greenland and Ural regions exhibit southwest-northeast (SW-NE) and southeast-northwest (SE-NW) oriented dipole-type patterns, respectively, while the composite field over the EAE region exhibits an Ω-type pattern. The type of composite blocking pattern seems to be related to the position of the blocking region relative to the positive center of the climatological stationary wave (CSW) anomaly existing near 10°W. The physical cause of why there are different composite blocking types in the three sub-regions is identified using a nonlinear multiscale interaction model. It is found that when the blocking event is in almost the same position as the positive CSW anomaly, the planetary-scale field can exhibit an Ω-type pattern due to the enhanced positive CSW anomaly. Neverthe- less, a SW-NE (SE-NW) oriented dipole-type block can occur due to the reduced positive CSW anomaly as it is farther in the west (east) of the positive CSW anomaly. The total fields of blocking in the three regions may exhibit a meandering flow comprised of several isolated anticyclonic and cyclonic vortices, which resembles the Berggren-Bolin-Rossby meandering jet type.

关 键 词:blocking flow pattern synoptic eddies nonlinear multiscale interaction climatological stationary wave anomaly 

分 类 号:P432[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象