检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:PAN Hao SUN Zhi-Wei
机构地区:[1]Department of Mathematics,Nanjing University
出 处:《Science China Mathematics》2014年第10期2091-2102,共12页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China(Grant Nos.10901078 and 11171140)
摘 要:This paper proves three conjectures on congruences involving central binomial coefficients or Lucas sequences.Let p be an odd prime and let a be a positive integer.It is shown that if p=1(mod 4)or a〉1then [3/4pa]∑k=0≡(2/pa)(mod p^2)where(—)denotes the Jacobi symbol.This confirms a conjecture of the second author.A conjecture of Tauraso is also confirmed by showing that p-1∑k=1 Lk/k^2≡0(mod p) provided p〉5.where the Lucas numbers Lo,L1,L2,...are defined by L_0=2,L1=1 and Ln+1=Ln+Ln-l(n=1,2,3,...).The third theorem states that if p=5 then Fp^a-(p^a/5)mod p^3 can be determined in the following way: p^a-1∑k=0(-1)^k(2k k)≡(p^a/5)(1-2F p^a-(pa/5))(mod p^3)which appeared as a conjecture in a paper of Sun and Tauraso in 2010.This paper proves three conjectures on congruences involving central binomial coefficients or Lucas sequences.Let p be an odd prime and let a be a positive integer.It is shown that if p=1(mod 4)or a>1then where(—)denotes the Jacobi symbol.This confirms a conjecture of the second author.A conjecture of Tauraso is also confirmed by showing that where the Lucas numbers Lo,L_1,L_2,...are defined by L_0=2,L_1=1 and L_n+1=L_n+L_n-l(n=1,2,3,...).The third theorem states that if p=5 then F_p^a-(p^a/5)mod p^3 can be determined in the following way:which appeared as a conjecture in a paper of Sun and Tauraso in 2010.
关 键 词:congruences modulo prime powers Fibonacci numbers Lucas sequences
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.200.242