检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵彦如[1] 王东升[1] 佟金[2] 孙霁宇[2] 张金
机构地区:[1]河南理工大学机械与动力工程学院,焦作454000 [2]吉林大学生物与农业工程学院,长春130022 [3]上海联合汽车电子有限公司,上海200051
出 处:《农业工程学报》2014年第15期33-38,共6页Transactions of the Chinese Society of Agricultural Engineering
基 金:国家自然科学基金资助项目(51075185;30600131);第八批河南省重点学科资助;河南省教育厅自然科学研究计划项目(2011B410002);河南理工大学博士基金资助项目(B2008-74)
摘 要:蜻蜓飞行能力高超,其膜翅具有超强抵御负载能力,为了理解和向生物系统学习进而进行技术创新,该文以蜻蜓膜翅为研究对象,以研究蜻蜓膜翅仿生模型的静力学特性为目标,采用ANSYS有限元模拟软件对蜻蜓膜翅有限元模型进行分析,在模型中采用二节点管单元Pipe20模拟翅脉,四节点壳单元Shell43模拟翅膜。对蜻蜓膜翅有限元模型进行结构静力学分析,考察了模型在均布载荷、弯矩、扭矩作用下的变形和应力、应变情况。结果显示,蜻蜓膜翅模型在均布载荷、弯矩、扭矩作用下只发生了整体变形,且变形较小,说明蜻蜓膜翅在主翅脉与支翅脉的交界处变形一致,具有优越的整体性能。通过仿蜻蜓膜翅结构模型的建立以及对蜻蜓膜翅结构和功能相关性的分析,为设计具有较好承载能力的薄膜材料提供了新的思路。A dragonfly can hover, flap its wings for flight and fly vertically for a short distance. The membranous wings of a dragonfly have a high load-bearing capacity for static and dynamic load during flight. The mass of the wings of a dragonfly is only 1%-2%of its whole body but the wings can stabilize its body. The statics properties of biomimetic models were researched. The finite element software ANSYS was used to simulate the dragonfly wing. The veins were simulated by pipe20 with two nodes and the membranes by shell43 with four nodes. The influence of geometrical nonlinearity was taken into account but material nonlinearity. The models were assumed in the elastic range. The three-dimensional model of the dragonfly wing was reconstructed using reverse engineering software Imageware. The veins of dragonfly wing were drawn with AutoCAD and the membranes were added with ANSYS. The finite element models imitating the dragonfly wing were established by using free meshing. The finite element models of the dragonfly wing were simulated with structural statics. The deformation, the stress and the strain of the models under loads were analyzed respectively. The loads include the uniform load, the bending moment and the torque. Under the uniform load, the deformation of the finite element model imitating a dragonfly wing is very small, and increases gradually from the base to the wing tip. The base of the model bears heavy stress, the middle parts smaller, and the wing tip the least. The strain shows a radial pattern along the longitudinal veins, and reduces gradually from the base to the wing tip of the model. Under the bending moment, the deformation and the rotation angle around y axis increase gradually from the base to the wing tip of the model. The heavy stress and strain are mainly concentrated on the base of the model. The small stress and strain are acted on the middle parts and the wing tip. The distribution trend of the stress and strain is in substantial agreement. Under the torque, the finite element model imit
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117