大红山铜矿胶结高矿柱强度设计及工程实践  被引量:11

Strength design of cemented high pillars in Dahongshan Copper Mine and its engineering practice

在线阅读下载全文

作  者:王俊[1] 乔登攀[1] 邓涛[1] 程伟华[1] 孙宏生[2] 杨兴宏 

机构地区:[1]昆明理工大学国土资源工程学院 [2]玉溪矿业有限公司大红山铜矿

出  处:《黄金》2014年第8期41-46,共6页Gold

基  金:国家自然科学基金项目(51164016);省级人才培训项目(KKSY201321059)

摘  要:大红山铜矿胶结充填矿柱具有"高、窄、长"的特点,并且矿柱充填体须服务相邻2个矿房的回采,暴露周期长,对充填体的稳定性、整体性和强度设计及充填实施提出了很高的要求。以B88-92-3盘区为例,通过分析确定,经验类比法和模型法很难用于胶结充填体强度设计。应用FLAC3D软件建立该盘区数值模型,通过弹性方案计算确定胶结充填体发生剪切破坏的参数,在此基础上利用弹塑性方案确定胶结充填体保持稳定的参数。工程实践表明,充填体在内聚力0.8 MPa、抗拉强度0.6 MPa、内摩擦角31°和抗压强度2.78 MPa条件下保持稳定。Cemented filling pillars of Dahongshan Copper Mine are "high, narrow and long", and must be responsible for the stopping of two adjacentore chambers. Its long exposure period requires much about the stability,integrity and strength design of the cemented fill pillar and the filling process. Take B88 - 92 - 3 panel for example, analysis holds that the experience analogy method and model method are clumsy in the strength design of cemented filling body. A numerical model of the panel is established by FLAC3D software,the parameters of cemented filling body that cause shear failure are determined by calculation of elastic solution. The parameters of the cemented filling body that maintain stability are determined by elastic-plastic solution. The engineering practice showes that the cemented filling body remains stable when the value of cohesion is 0.8 MPa,tensile strength is 0. 6 MPa, internal friction angle is 31° and compressive strength is 2.78 MPa.

关 键 词:高矿柱 胶结充填体 稳定性 强度设计 数值模拟 

分 类 号:TD853.343[矿业工程—金属矿开采]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象