Renovascular Morphological Changes in a Rabbit Model of Hydronephrosis  被引量:1

Renovascular Morphological Changes in a Rabbit Model of Hydronephrosis

在线阅读下载全文

作  者:李万强 董自强 周小兵 龙兵 张路生 杨简 周晓光 郑壬平 张杰 

机构地区:[1]Department of Urology, Renmin Hospital of Wuhan University [2]Department of Urology, the First College of Clinical Medical Science, China Three Gorges University [3]Yichang Central People’s Hospital [4]The Central Laboratory of Human Morphology, University of South China [5]Department of Urology,the First College of Clinical Medical Science, China Three Gorges University [6]Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University

出  处:《Journal of Huazhong University of Science and Technology(Medical Sciences)》2014年第4期575-581,共7页华中科技大学学报(医学英德文版)

基  金:supported by the Natural Science Foundation of Hubei Province,China(No.2008CDA054)

摘  要:Obstructive nephropathy ultimately leads to end-stage renal failure. Renovascular lesions are involved in various nephropathies, and most renal diseases have an ischemic component that underlies the resulting renal fibrosis. The aim of this study was to investigate whether morphological changes occur in the renal vasculature in hydronephrosis and the possible mechanisms involved. A model of complete unilateral ureteral obstruction(CUUO) was used. Experimental animals were divided into five groups: a normal control group(N) and groups of animals at 1st week(O1), 2nd week(O2), 4th week(O4) and 8th week(O8) after CUUO. Blood pressure was measured, renal arterial trees and glomeruli were assessed quantitatively, and renovascular three-dimensional reconstruction was performed on all groups. Glomerular ultrastructural changes were examined by transmission electron microscopy. The results showed that the systolic blood pressure was significantly increased in the obstructed groups(O1, O2, O4 and O8). Three-dimensional reconstruction showed sparse arterial trees in the O8 group, and a tortuous and sometimes ruptured glomerular basement membrane was found in the O4 and O8 groups. Furthermore, epithelial media thickness and media/lumen ratio were increased, lumen diameters were decreased, and the cross-sectional area of the media was unaltered in the segmental renal artery, interlobar artery and afferent arterioles, respectively. In conclusion, renal arterial trees and glomeruli were dramatically altered following CUUO and the changes may be partially ascribed to vascular remodeling. Elucidation of the molecular mechanisms of renovascular morphological alterations will enable the development of potential therapeutic approaches for hydronephrosis.Obstructive nephropathy ultimately leads to end-stage renal failure. Renovascular lesions are involved in various nephropathies, and most renal diseases have an ischemic component that underlies the resulting renal fibrosis. The aim of this study was to investigate whether morphological changes occur in the renal vasculature in hydronephrosis and the possible mechanisms involved. A model of complete unilateral ureteral obstruction(CUUO) was used. Experimental animals were divided into five groups: a normal control group(N) and groups of animals at 1st week(O1), 2nd week(O2), 4th week(O4) and 8th week(O8) after CUUO. Blood pressure was measured, renal arterial trees and glomeruli were assessed quantitatively, and renovascular three-dimensional reconstruction was performed on all groups. Glomerular ultrastructural changes were examined by transmission electron microscopy. The results showed that the systolic blood pressure was significantly increased in the obstructed groups(O1, O2, O4 and O8). Three-dimensional reconstruction showed sparse arterial trees in the O8 group, and a tortuous and sometimes ruptured glomerular basement membrane was found in the O4 and O8 groups. Furthermore, epithelial media thickness and media/lumen ratio were increased, lumen diameters were decreased, and the cross-sectional area of the media was unaltered in the segmental renal artery, interlobar artery and afferent arterioles, respectively. In conclusion, renal arterial trees and glomeruli were dramatically altered following CUUO and the changes may be partially ascribed to vascular remodeling. Elucidation of the molecular mechanisms of renovascular morphological alterations will enable the development of potential therapeutic approaches for hydronephrosis.

关 键 词:renal artery HYDRONEPHROSIS ureteral obstruction vascular cast RABBIT 

分 类 号:R692.2[医药卫生—泌尿科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象