Revisiting study on Boussinesq modeling of wave transformation over various reef profiles  被引量:6

Revisiting study on Boussinesq modeling of wave transformation over various reef profiles

在线阅读下载全文

作  者:Ke-zhao FANG Ji-wei YIN Zhong-bo LIU Jia-wen SUN Zhi-li ZOU 

机构地区:[1]State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology [2]National Marine Environment Monitoring Center,State Oceanic Administration [3]Heilongjiang Province Navigation Investigation and Design Institute

出  处:《Water Science and Engineering》2014年第3期306-318,共13页水科学与水工程(英文版)

基  金:supported by the National Natural Science Foundation of China(Grants No.51009018 and 51079024);the National Marine Environment Monitoring Center,State Oceanic Administration,P.R.China(Grant No.210206)

摘  要:To better understand the complex process of wave transformation and associated hydrodynamics over various fringing reef profiles, numerical experiments were conducted with a one-dimensional (1D) Boussinesq wave model. The model is based on higher-order Boussinesq equations and a higher-accuracy finite difference method. The dominant energy dissipation in the surf zone, wave breaking, and bottom friction were considered by use of the eddy viscosity concept and quadratic bottom friction law, respectively. Numerical simulation was conducted for a wide range of wave conditions and reef profiles. Good overall agreement between the computed results and the measurements shows that this model is capable of describing wave processes in the fringing reef environment. Numerical experiments were also conducted to track the source of underestimation of setup for highly nonlinear waves. Linear properties (including dispersion and shoaling) are found to contribute little to the underestimation; the low accuracy in nonlinearity and the ad hoc method for treating wave breaking may be the reason for the problem.To better understand the complex process of wave transformation and associated hydrodynamics over various fringing reef profiles, numerical experiments were conducted with a one-dimensional (1D) Boussinesq wave model. The model is based on higher-order Boussinesq equations and a higher-accuracy finite difference method. The dominant energy dissipation in the surf zone, wave breaking, and bottom friction were considered by use of the eddy viscosity concept and quadratic bottom friction law, respectively. Numerical simulation was conducted for a wide range of wave conditions and reef profiles. Good overall agreement between the computed results and the measurements shows that this model is capable of describing wave processes in the fringing reef environment. Numerical experiments were also conducted to track the source of underestimation of setup for highly nonlinear waves. Linear properties (including dispersion and shoaling) are found to contribute little to the underestimation; the low accuracy in nonlinearity and the ad hoc method for treating wave breaking may be the reason for the problem.

关 键 词:wave-induced setup  wave-induced setdown Boussinesq model wave breaking  reef 

分 类 号:P731.22[天文地球—海洋科学] TG379[金属学及工艺—金属压力加工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象