检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《模糊系统与数学》2014年第3期103-107,共5页Fuzzy Systems and Mathematics
基 金:西北工业大学研究生创业种子基金资助项目(z2012170)
摘 要:合理地度量与评价盟员在联盟中的贡献,制定公平的收益分配方案是联盟合作成功的关键。然而在现实生活中,某些情况下盟员并不是完全投入到某一联盟中,并且参与联盟的程度常常是模糊的。因此,在这种情况下引入合作博弈和模糊理论来研究模糊联盟收益分配问题是十分必要的。在模糊博弈环境下,引入模糊变量的可信性测度,建立了模糊联盟收益分配的模糊期望值规划模型,并设计了一个遗传算法来解决提出的模型问题,最后用算例进行了分析论证。Rationally evaluating each player's contribution and building up a just and fair allocation project is the key for a successful coalition. However, there are some situations where some players do not fully participate in a coalition, but to a certain extent that is fuzzy, therefore it is necessary to address the payoffs allocation problem of the fuzzy coalition using the cooperative games theory and fuzzy theory. Under fuzzy game environment, this paper firstly introduces the credibility measure of fuzzy variables, on the base of which the fuzzy expected value programming model is built to seek the payoffs of every player in the game coalition, and then a genetic algorithm is designed for solving the proposed fuzzy programming model. Finally, a numerical example with fuzzy numbers is provided to illustrate the result obtained from this paper.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70