检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《环境监测管理与技术》2014年第4期22-26,共5页The Administration and Technique of Environmental Monitoring
基 金:上海市科学技术委员会科研专项基金资助项目(12dz1202700)
摘 要:利用后向轨迹模式,结合上海PM_(2.5)的浓度数据计算了2012年6月27日—2013年6月26日以上海为起始点的后向轨迹,并通过轨迹相关的分析方法,研究不同来源区域对上海PM_(2.5)浓度的贡献影响。结果表明:长三角地区的排放对上海的贡献最为显著;苏北、山东等地区的排放对上海也有较明显的贡献;来自海面的贡献总体低于大陆。所采用的轨迹多元回归分析法为PM_(2.5)的来源分布及传输特征研究提供了新思路。Back ward trajectory model was used along with PM2.5 concentration data of Shanghai to compute the backward air flow trajectories starting from June 27,2012 to June 26,2013.Based on the trajectories,study of PM2.5 source contribution in Shanghai was conducted with trajectory related methods.The results showed that the emission in Yangtze River Delta region was the major contribution,emissions from the areas in Shandong Province and northern Jiangsu Province were also an important contribution source,while contribution from the seas was much less than that from the land.Among the analysis methods,TMLR provides a new idea for the study of PM2.5 source distribution and transportation characteristics.
关 键 词:后向轨迹 轨迹多元回归 聚类分析 潜在源贡献因子 浓度权重轨迹 PM2.5 上海
分 类 号:X513[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145