机构地区:[1]Department of Earth Sciences, Sun Yat-Sen University [2]Department of Geology, Yunnan University [3]State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences [4]John De Laeter Center for Isotope Research, Curtin University [5]Coal Geological Prospecting Institute of Yunnan Province
出 处:《Science China Earth Sciences》2014年第9期2181-2194,共14页中国科学(地球科学英文版)
基 金:supported by National Natural Science Foundation of China (Grant Nos. 41190073, 41372198 and 40825009);National Basic Research Program of China (Grant No. 2014CB440901);State Key Laboratory of Ore Deport Geochemistry, Chinese Academy of Sciences (Grant No. 201301);Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (Grant No. GIGCAS-135-Y234 151001)
摘 要:High εNd(t)-εHf(t) granites are robust evidence for crustal growth. In this paper we report results of petrologic, geochronological and geochemical investigations on the Huashiban granites from the Ailaoshan tectonic zone in western Yunnan (SW China). Zircon grains separated from the two samples (10HH-119A and 10HH-120A) yield the weighted mean 206pb/238u ages of 229.9 ± 2.0 Ma and 229.3 ± 2.3 Ma, respectively, interpreted as the crystallization ages of the granites. Based on our results, in combination with the existing U-Pb geochronological data for the Ailaoshan metamorphic rocks, we propose that the Ai- laoshan Group might be a rock complex composed of the Mesoproterozoic, Neoproterozoic, Hercynian, Indosinian and Hima- layan components, rather than a part of the crystalline basement of the Yangtze block. The zircon grains show highly depleted Lu-Hf isotope compositions, with positive eHf(t) values ranging from 8.4 to 13.1. The Huashiban granites have high SiO2 (72.66 wt%-73.70 wt%), low Mg# (0.28-0.34) with A/CNK=1.01-1.05, and can be classified as peralumious high-K calc-alkaline I-type granites. A synthesis of these data indicates that the Ailaoshan tectonic zone had evolved into a post-collisional setting by the Late-Triassic (229 Ma). Genesis of the Huashiban high εNd(t)-εHf(t) granites involved into two processes: (1) underplating of the sub-arc mantle into the lower crust, and (2) remelting of the juvenile crustal materials in re- sponse to the upwelling of the asthenospheric mantle in the post-collisional setting.High εNd(t)-εHf(t) granites are robust evidence for crustal growth. In this paper we report results of petrologic, geochronological and geochemical investigations on the Huashiban granites from the Ailaoshan tectonic zone in western Yunnan(SW China). Zircon grains separated from the two samples(10HH-119 A and 10HH-120A) yield the weighted mean 206Pb/238 U ages of 229.9 ± 2.0 Ma and 229.3 ± 2.3 Ma, respectively, interpreted as the crystallization ages of the granites. Based on our results, in combination with the existing U-Pb geochronological data for the Ailaoshan metamorphic rocks, we propose that the Ailaoshan Group might be a rock complex composed of the Mesoproterozoic, Neoproterozoic, Hercynian, Indosinian and Himalayan components, rather than a part of the crystalline basement of the Yangtze block. The zircon grains show highly depleted Lu-Hf isotope compositions, with positive εHf(t) values ranging from 8.4 to 13.1. The Huashiban granites have high SiO2(72.66 wt%–73.70 wt%), low Mg#(0.28–0.34) with A/CNK=1.01–1.05, and can be classified as peralumious high-K calc-alkaline I-type granites. A synthesis of these data indicates that the Ailaoshan tectonic zone had evolved into a post-collisional setting by the Late-Triassic(229 Ma). Genesis of the Huashiban high εNd(t)-εHf(t) granites involved into two processes:(1) underplating of the sub-arc mantle into the lower crust, and(2) remelting of the juvenile crustal materials in response to the upwelling of the asthenospheric mantle in the post-collisional setting.
关 键 词:high εNd(t)-εHf(t) granite Late Triassic POST-COLLISION Ailaoshan crustal growth
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...