检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科技大学电子科学与工程学院,湖南长沙410073
出 处:《雷达科学与技术》2014年第4期395-400,405,共7页Radar Science and Technology
基 金:国家自然科学基金(No.61372163)
摘 要:针对复杂环境中微弱旋转体目标(如地雷等)检测的难题,提出了一种基于方位散射特征和局部对比度特征融合的检测算法。首先,对旋转体目标特性进行了分析,进而利用子孔径SAR图像提取方位散射熵作为待检测特征。对全孔径SAR图像分别进行方位不变性检测和CFAR检测,并将检测结果相融合,得到最终检测结果。算法体现了利用目标先验知识辅助检测的思路,实测数据结果表明,该方法能够有效剔除原先在全孔径图像中无法剔除的杂波,有效降低检测的虚警率。In complex environments, detection of weak body-of-revolution(BOR) targets, such as land- mines, is a difficult problem. A detection approach of BOR targets is proposed in this paper, which exploits the characteristics of aspectual invariance and local contrast. Using sub-aperture image, characteristic of BOR targets is analyzed and azimuth scattering entropy(ASE) is then extracted as a detection feature. The ultimate detection result is obtained by fusing results from aspectual invariance detection and CFAR detection of the full aperture image. The idea of detecting targets with priori information is showed in this paper. The results of experimental data demonstrate that the proposed algorithm can effectively eliminate the clutter which cannot be eliminated in the full aperture image, which eventually decreases the false alarm rate.
分 类 号:TN957.51[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222