基于动态社会网络的敏感边的隐私保护  被引量:5

Privacy Preservation of Sensitive Edges Based on Dynamic Social Networks

在线阅读下载全文

作  者:陈伟鹤[1] 朱江[1] 李文静[1] 

机构地区:[1]江苏大学计算机科学与通信工程学院,镇江212013

出  处:《计算机科学》2014年第8期186-191,共6页Computer Science

基  金:国家自然科学基金项目(60603041)资助

摘  要:为解决动态社会网络发布中敏感边的隐私保护问题,针对攻击者将目标节点在不同时刻的节点度作为背景知识的应用场景,提出了一种新的基于动态网络的敏感边的隐私保护方法,它的思想是:首先通过k-分组和(k,Δd)-匿名发布隐私保护方法来确保目标节点不能被唯一识别,被攻击识别的概率不超过1/k;其次根据泄露概率对边进行保护,确保敏感边泄露的概率不超过用户给定参数u。理论分析和实验证明,所提出的方法可以抵御攻击者对敏感边的攻击,能有效地保护社会网络中用户的隐私信息,同时保证了动态社会网络发布的质量。In order to solve the issues of privacy preservation of sensitive edges in dynamic social networks data publica- tion, we proposed a novel technique about the privacy preservation of sensitive edges based on dynamic social networks. The atta-cker uses the degrees of target nodes at different times as their background knowledge. Firstly, by using k- grouping and (k, △d)-anonymous, it can be sure that the target nodes can not be uniquely identified by privacy atta- ckers. The probability of being uniquely identified is no more than 1/k. Secondly,this method can ensure that the leak- age probability of sensitive edges will not exceed the user defined parameter u. Theoretical analysis and experiments show that the method presented in this paper can resist sensitive edges identification attacks. It can not only protect the users privacy information effectively but also ensure the utility of published data in dynamic social networks.

关 键 词:动态社会网络 隐私保护 匿名 泄露概率 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象