检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉大学水资源与水电工程科学国家重点实验室,武汉430072
出 处:《灌溉排水学报》2014年第4期356-359,共4页Journal of Irrigation and Drainage
基 金:高等学校博士学科点专项科研基金项目(20130141110014)
摘 要:基于随机过程,将中稻平均单产分离为趋势产量和气候产量,联合运用灰色系统GM(1,1)模型、多元线性回归、自回归模型建立了漳河灌区中稻平均单产预测组合模型。该模型在率定期(1988—2009年)和验证期(2010—2013年)的相对误差均为6%左右,模型Nash-Sutcliffe效率系数为0.65。其预测结果与传统的直接模拟相比,预测精度有很大提高,与BP神经网络模型的预测结果基本一致,具有可靠的精度,考虑到该组合模型能给出具体的表达式且预测结果更为稳定,故更利于实际应用。Based on stochastic process, the average middle-season rice yield could be divided into trend yields and climate yields. The middle-season rice prediction model in Zhanghe irrigation area was established with the joint use of gray GM(1,1) model, multiple linear regression and autoregression. The average relative errors were nearly 6 % in both the calibration and validation stages, and the Nash-Sutcliffe efficiency was 0.65. The predicting result was consistent with that of BP neural network model. However, this combinatorial model could give a certain formula and the prediction process would be more stable. Thus, the established combinatorial predicting model was reliable and could be applied in the practice.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3