基于梯度统计量的逆抽样下风险差的置信区间构建  被引量:2

Confidence Interval Construction Based on Gradient Statistics for Rsik Difference Under Sapling

在线阅读下载全文

作  者:牛翠珍[1] 范国良[2] 

机构地区:[1]中国人民大学统计学院,北京100872 [2]安徽工程大学数理学院,安徽芜湖241000

出  处:《统计与信息论坛》2014年第8期9-14,共6页Journal of Statistics and Information

基  金:中国人民大学科学研究基金项目<基于梯度统计量的双边以及配对数据的风险差和风险比的统计推断>(14XNH102)

摘  要:通过逆抽样过程获得的分布又称为负二项分布,在流行病学研究和二分类变量分布的研究中应用极为广泛。因此,提出两种基于梯度统计量的逆抽样下风险差的置信区间的构建方法,分别依据风险差的极大似然估计(MLE)和方差最小无偏一致估计量(UMVUE)。与现有的WALD方法和得分方法相比,该方法所构建置信区间的优点在于:置信区间构建方法既不需要计算Fisher信息阵也不需要计算其逆矩阵,可使计算得以大大简化;对所提出的基于梯度统计量的置信区间构建方法进行蒙特卡洛模拟研究,模拟结果表明提出的构建方法可以得到很好的覆盖概率和较短的区间宽度。In epidemiology study , inverse sampling , w hich is also know n as negative binomial sampling ,is a common sampling scheme .In this paper ,for the construction of the confidence interval for risk difference under inverse sampling ,we develop two gradient statistics based methods ,which depend on the maximum likelihood estimator (MLE) and uniformly minimum variance unbiased estimator (UMVUE) respectively .Differently from the WALD and SCORE based methods ,our proposed methods do not need to compute the Fisher information matrix nor its inverse .Simulations are carried out to compare with the likelihood ratio and Score test based methods .We illustrate our proposed methods with a real data set from a drug comparison study .Our results further confirm previous findings .

关 键 词:逆抽样 负二项分布 梯度统计量 风险差 

分 类 号:O212.2[理学—概率论与数理统计] R195[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象