检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘春[1]
机构地区:[1]四川建筑职业技术学院网络管理中心,四川德阳618000
出 处:《计算机与现代化》2014年第8期75-80,共6页Computer and Modernization
摘 要:为了提高网络入侵检测的正确率,提出一种基于组合算法选择特征的网络入侵检测模型(GA-PSO)。首先建立网络入侵特征选择的数学模型,采用遗传算法迅速找到网络入侵的特征子集,然后采用粒子群算法进一步选择,找到最优特征子集,最后采用极限学习机建立网络入侵检测分类器,并采用KDD CUP 99数据集进行仿真测试。结果表明,GAPSO不仅提高了入侵检测速度,而且可以提高网络入侵检测的正确率。In order to improve the detection accuracy of network intrusion,this paper proposed a network intrusion detection model based on combination algorithm selecting features. Firstly,the mathematical model of network intrusion detection features selecting problem is established,and then genetic algorithm is used to find the feasible sub-features,and the optimal sub-features is obtained by particle swarm optimization algorithm,finally,the network intrusion detection model is established by relevance vector machine,and the performance is test by simulation experiments. The test results show that the proposed model can not only improved the detection speed,but also can improve the network intrusion detection accuracy.
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117