基于AHP模型的辽宁工业旅游创新发展效率研究  被引量:3

Effectiveness of innovation development of industrial tourism in Liaoning province based on AHP model

在线阅读下载全文

作  者:陈国宏[1] 孟凡雷[1] 

机构地区:[1]沈阳师范大学管理学院,沈阳110034

出  处:《沈阳师范大学学报(自然科学版)》2014年第3期388-392,共5页Journal of Shenyang Normal University:Natural Science Edition

基  金:辽宁省社会科学规划基金资助项目(L12DJY073);沈阳科技局重大项目(F12276545)

摘  要:运用AHP层次分析法对影响辽宁省工业旅游创新发展的因素做了定性与定量分析。结果表明,在准则层中规模的影响权重最大,并且超过了一半,水平的影响次之,而效益的影响最弱,揭示了辽宁省工业旅游大而不强的尴尬局面。在因子层中,直接经济效益、工业旅游产品结构和工业旅游开发这3个重要因子的权重很低,揭示了辽宁省工业旅游创新发展的短板。通过对研究数据的分析,从宏观和微观2个层面分别对政府和企业提出了针对性建议。基于市场需求为导向,增加工业旅游的创新发展效益,使游客享受创造的情趣;以科技创新为手段,提高工业旅游的创新发展水平。建立科学的管理发展体系,扩大工业旅游的规模,更好的满足市场需求。AHP analytic hierarchy process(AHP)was used to analyze qualitatively and quantitatively factors affecting the innovation and development of industrial tourism in Liaoning province.The results show that,in rule layer weight analysis,the influence of scale is the largest(more than half),followed by level and benefits.The analysis is correlated with the fact that industrial tourism in Liaoning province is big but not strong.In factor layer analysis,the weights of direct economic benefit,industrial tourism product structure and industrial tourism development are low.It reveals that the above three factors are indeed the soft spots in the innovation and development of industrial tourism in Liaoning province.The model analysis provides valuable macroscopic-and microscopic-insights for the government and enterprises.Based on market demand-oriented,innovation and development efficiency of industrial tourism will be increased,tourist enjoying create fun;Technology and innovation as a means,innovation and development level of industrial tourism will be improved.Scientific management development system is established,the scale of industrial tourism will be expanded,and meets market demand better.

关 键 词:AHP模型 工业旅游 创新发展 

分 类 号:F590.1[经济管理—旅游管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象