Characteristic of macroporous CeO_2-ZrO_2 oxygen carrier for chemical-looping steam methane reforming  被引量:3

Characteristic of macroporous CeO_2-ZrO_2 oxygen carrier for chemical-looping steam methane reforming

在线阅读下载全文

作  者:郑燕娥 祝星 王华 李孔斋 王禹皓 魏永刚 

机构地区:[1]State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology [2]Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology

出  处:《Journal of Rare Earths》2014年第9期842-848,共7页稀土学报(英文版)

基  金:Project supported by National Natural Science Foundation of China(51104074,51204083,51174105,51374004);the Applied Basic Research Program of Yunnan Province(2012FD016);the Candidate Talents Training Fund of Yunnan Province(2012HB009)

摘  要:Chemical-looping steam methane reforming (CL-SMR) is a novel process towards the production of pure hydrogen and syngas, consisting ofa syngas production reaction and a hydrogen production reaction. Macroporous CeQ-ZrO2 oxygen carders with different pore sizes prepared by colloidal crystal templating method and characterized by techniques of scalming electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD) and temperature pro- grammed reduction (H2-TPR) were tested in CL-SMR process. For comparison, nonporous CeO2-ZrO2 oxygen carrier prepared by precipitation method was also investigated. It was found that macroporous CeO2-ZrO2 oxygen carriers owned higher reducibility and reactivity in CL-SMR process than nonporous samples. For the macroporous CeO2-ZrO2 sample, the decline of pore size could im- prove the reducibility and reactivity. The macroporous sample with a pore size of 100 nm (labeled as Ce-Zr-100) showed the highest performance for the co-production of syngas and hydrogen during the successive CL-SMR redox cycles. After 10 redox cycles, it still retained good porous structure and reducibility. It was found that the porous structure could accelerate the oxygen release from bulk to surface, leading to a good mobility of oxygen and higher reducibility. In addition, it was also favorable for diffusion and penetration of methane and water steam into the sample particles to accelerate the reaction rate.Chemical-looping steam methane reforming (CL-SMR) is a novel process towards the production of pure hydrogen and syngas, consisting ofa syngas production reaction and a hydrogen production reaction. Macroporous CeQ-ZrO2 oxygen carders with different pore sizes prepared by colloidal crystal templating method and characterized by techniques of scalming electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD) and temperature pro- grammed reduction (H2-TPR) were tested in CL-SMR process. For comparison, nonporous CeO2-ZrO2 oxygen carrier prepared by precipitation method was also investigated. It was found that macroporous CeO2-ZrO2 oxygen carriers owned higher reducibility and reactivity in CL-SMR process than nonporous samples. For the macroporous CeO2-ZrO2 sample, the decline of pore size could im- prove the reducibility and reactivity. The macroporous sample with a pore size of 100 nm (labeled as Ce-Zr-100) showed the highest performance for the co-production of syngas and hydrogen during the successive CL-SMR redox cycles. After 10 redox cycles, it still retained good porous structure and reducibility. It was found that the porous structure could accelerate the oxygen release from bulk to surface, leading to a good mobility of oxygen and higher reducibility. In addition, it was also favorable for diffusion and penetration of methane and water steam into the sample particles to accelerate the reaction rate.

关 键 词:rare earths chemicaMooping steam methane reforming macroporous CeO2-ZrO2 oxygen carrier hydrogen SYNGAS 

分 类 号:TQ426[化学工程] TQ133.3

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象