Approximation of Generalized Bernstein Operators  

Approximation of Generalized Bernstein Operators

在线阅读下载全文

作  者:Xiru Yang Chungou Zhang Yingdian Ma 

机构地区:[1]School of Mathematical Sciences, Capital Normal University [2]Department of Information Administration, The Central Institute for Correctional Police

出  处:《Analysis in Theory and Applications》2014年第2期205-213,共9页分析理论与应用(英文刊)

基  金:Supported by the Natural Science Foundation of China (No. 11271263, 11371258)

摘  要:This paper is devoted to study direct and converse approximation theorems of the generalized Bemstein operators Cn (f, sn,x) via so-called unified modulus ωφλ^2 (f,t), 0 ≤ λ ≤1. We obtain main results as followsωφλ^2 (f,t)=O(t^α)←→|Cn(f,sn,x)-f(x)|=O((n^-1/2δn^1-λ(x))^α),where δn^2(x)=max{φ^2(x),1/n} and 0〈α〈2.This paper is devoted to study direct and converse approximation theorems of the generalized Bemstein operators Cn (f, sn,x) via so-called unified modulus ωφλ^2 (f,t), 0 ≤ λ ≤1. We obtain main results as followsωφλ^2 (f,t)=O(t^α)←→|Cn(f,sn,x)-f(x)|=O((n^-1/2δn^1-λ(x))^α),where δn^2(x)=max{φ^2(x),1/n} and 0〈α〈2.

关 键 词:Bernstein type operator Ditzian-Totik modulus direct and converse approximation theorem. 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象