检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张辉[1,2] 李国辉[1] 徐新文[3] 贾立[1] 孙博良[1]
机构地区:[1]国防科技大学信息系统与管理学院 [2]61226部队 [3]国防科技大学指挥军官基础教育学院
出 处:《国防科技大学学报》2014年第4期169-176,共8页Journal of National University of Defense Technology
基 金:国家自然科学基金项目(61170158);国家部委资助项目;湖南省自然科学基金项目(12JJ5028)
摘 要:互联网上每天都会报道许多新闻事件,为了挖掘各事件间的关系,提出一种新闻事件关联建模方法。该方法首先利用TF-IEF和相邻词合并策略对事件的相关报道集提取关键词,然后综合多种词共现度量窗口对事件关键词的关联关系建模,构建事件关键词关联网络,最后依据事件间共有关键词的程度建立事件关联模型,从而建立事件关联网络。实验表明该方法能够较准确地提取报道集的关键词,较好地发现事件间的关联关系。There are many news events reported daily on the Internet. An innovative method is proposed to mine event-relations between news. Following an adjacent term-combining strategy, this method primarily utilized a so-called term frequency & inverse event frequency ( TF-IEF ) model to extract key phrases from the corresponding reports set as to a particular event. Then term co-occurrence windows were employed to calculate the associating degree of every single term pair. This degree is indicative in building event key phrase-networks. Further, two matters were correlated to shape the event relation-network model: (I) conunon key phrases as mediators within event key phrase-network, and (II) the degree of conunonness of key phrases within different observed events. An experiment was conducted to exanfine the performance of proposed method. The results show that the method can accurately extract key phrases and comprehensively mine associations between events.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15