机构地区:[1]School of Nuclear Science and Technology, Lanzhou University
出 处:《Plasma Science and Technology》2014年第9期815-820,共6页等离子体科学和技术(英文版)
基 金:supported by National Natural Science Foundation of China(Nos.11135002,11075069,91026021 and 11075068);the Scholarship Award for Excellent Doctoral Student Granted by the Ministry of Education of China
摘 要:Single-pulse and double-pulse optical emission spectroscopy (OES) analyses were carried out in air by using ultrashort laser pulses at atmospheric pressure. The aim of this work is to use spectroscopic methods to analyze the early phase of laser-induced plasma after the femtosecond laser pulse. The temporal behavior of emission spectra of air plasma has been characterized. In comparison with the single-pulse scheme, the plasma emission obtained in the double-pulse scheme presents a more intense continuum along with several additional ionic lines. As only one line is available in the single-pulse scheme, the plasma temperature measurements were performed using only the relative line-to-continuum intensity ratio method, whereas the relative line-to-line intensity ratio method and the relative line-to-continuum intensity ratio method were used simultaneously to estimate the electron temperature in the double-pulse scheme. The results reveal that the temperature values obtained by the two methods in the double-pulse scheme agree. Moreover, this shows that the relative line-to-continuum intensity ratio method is suitable for early phase of laser-induced plasma diagnostics. The electron number density was estimated using the Stark broadening method. In the early phase of laser-induced plasma, the temporal evolution of the electron number density exhibits a power law decrease with delay time.Single-pulse and double-pulse optical emission spectroscopy (OES) analyses were carried out in air by using ultrashort laser pulses at atmospheric pressure. The aim of this work is to use spectroscopic methods to analyze the early phase of laser-induced plasma after the femtosecond laser pulse. The temporal behavior of emission spectra of air plasma has been characterized. In comparison with the single-pulse scheme, the plasma emission obtained in the double-pulse scheme presents a more intense continuum along with several additional ionic lines. As only one line is available in the single-pulse scheme, the plasma temperature measurements were performed using only the relative line-to-continuum intensity ratio method, whereas the relative line-to-line intensity ratio method and the relative line-to-continuum intensity ratio method were used simultaneously to estimate the electron temperature in the double-pulse scheme. The results reveal that the temperature values obtained by the two methods in the double-pulse scheme agree. Moreover, this shows that the relative line-to-continuum intensity ratio method is suitable for early phase of laser-induced plasma diagnostics. The electron number density was estimated using the Stark broadening method. In the early phase of laser-induced plasma, the temporal evolution of the electron number density exhibits a power law decrease with delay time.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...