检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京工业大学电子信息与控制工程学院,北京100124
出 处:《自动化学报》2014年第9期2050-2056,共7页Acta Automatica Sinica
基 金:国家自然科学基金(60975065);北京市青年拔尖人才培育计划(CITTCD201304046)资助~~
摘 要:针对角晃动与线晃动等动态干扰条件下,旋转式捷联惯导系统(Rotary strapdown inertial navigation system,Rotary SINS)难以实现自对准的问题,提出了一种基于惯性系的自对准新算法.首先,基于惯性系下粗对准的结果,推导了双轴转动调制捷联惯导系统的惯性系精对准误差模型;然后,针对观测模型的噪声不确定性问题,通过改变渐消因子阵的嵌入方式,提出了一种改进的多渐消因子自适应Kalman滤波方法.最后,仿真实验证明该方法能够有效解决动态干扰条件下旋转式捷联惯导系统的自对准问题,实现快速自主高精度对准.As the carrier would undergo angular and linear swaying in various dynamic disturbance cases, rotary strapdown inertial navigation system (Rotary SINS) is difficult to realize self-alignment. In order to solve this problem, a new selfalignment method based on inertial reference frame was proposed. Firstly, based on the coarse alignment results in the inertial frame, the initial fine alignment error models of a dualaxis rotation modulation of rotary SINS in the inertial frame is derived. Then, aiming at the noise uncertainty of the observation model, by changing the embedded manner of fading factors, this paper proposes an improved adaptive Kahnan filter based on multiple fading factors. Finally, simulation results show that the proposed method can effectively solve the self-alignment problem of rotary SINS in dynamic disturbance cases, realizing rapid and accurate self-alignment.
关 键 词:旋转式捷联惯导系统 初始对准 惯性系 自适应滤波 多渐消因子
分 类 号:TN966[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.252.90