检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jia Liu
机构地区:[1]School of Mathematics and Physics Changzhou University Changzhou 213163, P. R. China
出 处:《International Journal of Biomathematics》2014年第4期121-137,共17页生物数学学报(英文版)
摘 要:In this paper, we investigate the impact of maturation delay on the positive equilibrium solutions in a stage-structured predator prey system. By analyzing the characteristic equation we derive the conditions for the emergence of Hopf bifurcation. By applying the normal form and the center manifold argument, the direction as well as the sta- bility of periodic solutions bifurcating from Hopf bifurcation is explored. Results show that maturation delay can change the nature of the positive equilibrium solutions, and the loss of equilibrium stability occurs as a consequence of Hopf bifurcation. When Hopf bifurcation takes place, periodic solution arises and is further demonstrated to be asymptotically stable. In addition, the periodic solutions appear only for intermediate maturation delay, that is, there exists a delay window, outside of which the positive equilibrium is locally stable. Furthermore, numerical analysis shows that Hopf bifur- cation is favored by a superior competition for adult predators to juveniles, a smaller mortality on juvenile and/or adult predators, and a higher resource carrying capacity. Interestingly, increasing food carrying capacity can lead to the emergence of irregular chaotic dynamics and regular limit cycles.
关 键 词:Time delay Hopf bifurcation limit cycles predator-prey model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62