三维简谐势阱中玻色-爱因斯坦凝聚的边界效应  被引量:1

Boundary effects of Bose-Einstein condensation in a three-dimensional harmonic trap

在线阅读下载全文

作  者:袁都奇[1] 

机构地区:[1]宝鸡文理学院物理与信息技术系,宝鸡721016

出  处:《物理学报》2014年第17期59-65,共7页Acta Physica Sinica

基  金:陕西省自然科学计划项目(批准号:2012JM1006);宝鸡文理学院重点科研项目(批准号:ZK11045)资助的课题~~

摘  要:在定义特征长度的基础上,应用Euler–MacLaurin公式,研究了理想玻色气体在三维简谐势阱中玻色-爱因斯坦凝聚的边界效应.结果表明:粒子的凝聚分数由于有限尺度和有限粒子数效应而减小,修正的凝聚分数和凝聚温度由于边界效应存在一个极大值,选择优化的最佳势阱参数,可以有效提高凝聚分数和凝聚温度;热容量的跃变存在边界效应和粒子数效应,选择合理的势阱参数时,热容量的跃变存在一个极小值.导出了简谐势阱中有限理想玻色气体的状态方程,揭示了压强的各向异性(或各向同性)取决于简谐势频率的各向异性(或各向同性).By defining the characteristic length, the boundary effects of Bose-Einstein condensation in a three-dimensional harmonic trap are investigated using the Euler-MacLaurin formula. Results show that the condensed fraction of particles reduces due to the finite-size effects and the effects of finite particle number; the corrections of the condensation fraction and the condensation temperature have, respectively, a maximum value due to the boundary effect, hence it is very effective to optimize the parameters of the harmonic traps for improving the condensation fraction and the condensation temperature. In the jump of heat capacity exist the boundary effects and the effects of finite particle number, and the jump of heat capacity has a minimum because the parameters of harmonic traps are selected to be reasonable. The equation of state is derived for a finite ideal Bose gas system in a three-dimensional harmonic trap; the anisotropy (or isotropy) of the pressure is determined by the anisotropy (or isotropy) of the frequency of the harmonic potential.

关 键 词:边界效应 理想玻色气体 玻色-爱因斯坦凝聚 简谐势阱 

分 类 号:O469[理学—凝聚态物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象