4-f光学架构频域纯相位调制压缩成像  

Compressed Imaging with Frequency-Domain Phase Modulation When in 4-f Optical Architecture

在线阅读下载全文

作  者:张成[1] 程鸿[1,2] 张芬[1] 韦穗[1] 

机构地区:[1]安徽大学计算智能与信号处理教育部重点实验室,合肥230039 [2]安徽省现代成像与显示技术重点实验室,合肥230039

出  处:《北京邮电大学学报》2014年第3期13-17,共5页Journal of Beijing University of Posts and Telecommunications

基  金:NSFC-广东联合基金项目(U1201255);国家自然科学基金项目(61201396;61201227;61301296;61377006);高等学校博士学科点专项科研基金项目(20113401130001);安徽省自然科学基金项目(1208085QF114);安徽大学博士科研启动经费项目(33190218);安徽大学青年基金项目(KJQN1120)

摘  要:为了改善传统的多幅亚像素图像配准融合实现超分辨率的方法面临的配准误差和高成本问题,将压缩传感理论引入超分辨率成像.基于大多数自然图像普遍具有的稀疏表示特性,以经典的4-f光学架构为基础,利用频域中相位比振幅包含更多信息的特点,提出了一种频域纯相位调制压缩成像方法,通过重建算法从单次曝光记录的低维测量值中恢复原高分辨率图像的信息.数值实验结果表明,提出的方法可以有效地实现图像信息的随机调制和高质量重建,是一种有潜力的压缩成像物理实现方案,具有较高的重建信噪比和较少的重建时间,尤其是对于大尺度图像.One of the goals of optical imaging and image processing is super-resolution imaging. In order to reduce the registration error and costly problem facing in multiple sub-pixel image registration fusion method to achieve super-resolution, a compressive sensing method is introduced for super-resolution imaging, it benefits from the general sparse representation feature of most nature images. Based on the classical 4-f optical architecture, the phase will contain more information than the amplitude in frequency domain, a compressed imaging method with pure phase modulation in the frequency domain is proposed. The original high-resolution image information can be recovered from the low-dimensional measurements recorded with a single exposure by various algorithms. Numerical results demonstrate that the proposed can effectively achieve random modulation of image information and high-quality reconstruction, which can be considered as a promising scheme for physics implementation construction signal to noise ratio and less reconstruction time, especi of compressed imaging with high really for large-scale image.

关 键 词:压缩成像 图像超分辨率 频域相位调制 4-f光学架构 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象