Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate  被引量:1

Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate

在线阅读下载全文

作  者:王志刚 高瑞梅 樊晓明 韩七星 

机构地区:[1]College of Mathematics,Jilin University [2]School of Mathematical Sciences,Harbin Normal University [3]College of Science,Changchun University of Science and Technology [4]School of Mathematics,Changchun Normal University

出  处:《Chinese Physics B》2014年第9期19-34,共16页中国物理B(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant No.11326078);the Project of Science and Technology of Heilongjiang Province of China(Grant No.12531187)

摘  要:We discuss in this paper a deterministic multi-group MSIR epidemic model with a vaccination rate, the basic reproduction number Ro, a key parameter in epidemiology, is a threshold which determines the persistence or extinction of the disease. By using Lyapunov function techniques, we show if Ro is greater than 1 and the deterministic model obeys some conditions, then the disease will prevail, the infective persists and the endemic state is asymptotically stable in a feasible region. If Ro is less than or equal to 1, then the infective disappear so the disease dies out. In addition, stochastic noises around the endemic equilibrium will be added to the deterministic MSIR model in order that the deterministic model is extended to a system of stochastic ordinary differential equations. In the stochastic version, we carry out a detailed analysis on the asymptotic behavior of the stochastic model. In addition, regarding the value of Ro, when the stochastic system obeys some conditions and Ro is greater than 1, we deduce the stochastic system is stochastically asymptotically stable. Finally, the deterministic and stochastic model dynamics are illustrated through computer simulations.We discuss in this paper a deterministic multi-group MSIR epidemic model with a vaccination rate, the basic reproduction number Ro, a key parameter in epidemiology, is a threshold which determines the persistence or extinction of the disease. By using Lyapunov function techniques, we show if Ro is greater than 1 and the deterministic model obeys some conditions, then the disease will prevail, the infective persists and the endemic state is asymptotically stable in a feasible region. If Ro is less than or equal to 1, then the infective disappear so the disease dies out. In addition, stochastic noises around the endemic equilibrium will be added to the deterministic MSIR model in order that the deterministic model is extended to a system of stochastic ordinary differential equations. In the stochastic version, we carry out a detailed analysis on the asymptotic behavior of the stochastic model. In addition, regarding the value of Ro, when the stochastic system obeys some conditions and Ro is greater than 1, we deduce the stochastic system is stochastically asymptotically stable. Finally, the deterministic and stochastic model dynamics are illustrated through computer simulations.

关 键 词:MSIR epidemic model EQUILIBRIUM graph theory Brownian motion 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象