Chemical-looping gasification of biomass in a 10 kW_(th) interconnected fluidized bed reactor using Fe_2O_3/Al_2O_3 oxygen carrier  被引量:9

Chemical-looping gasification of biomass in a 10 kW_(th) interconnected fluidized bed reactor using Fe_2O_3/Al_2O_3 oxygen carrier

在线阅读下载全文

作  者:HUSEYIN Sozen WEI Guo-qiang LI Hai-bin HE Fang HUANG Zhen 

机构地区:[1]CAS Key Laboratory of Renewable Energy,Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences (CAS)

出  处:《燃料化学学报》2014年第8期922-931,共10页Journal of Fuel Chemistry and Technology

基  金:Supported by the National Natural Science Foundation of China(51076154);National Key Technology Research&Development Program of 12 th Five-year of China(2011BAD15B05)

摘  要:Abstract:The aim of this research is to design and operate a 10 kW hot chemical-looping gasification(CLG)unit using Fe2O3/Al2O3as an oxygen carrier and saw dust as a fuel.The effect of the operation temperature on gas composition in the air reactor and the fuel reactor,and the carbon conversion of biomass to CO2and CO in the fuel reactor have been experimentally studied.A total60 h run has been obtained with the same batch of oxygen carrier of iron oxide supported with alumina.The results show that CO and H2concentrations are increased with increasing temperature in the fuel reactor.It is also found that with increasing fuel reactor temperature,both the amount of residual char in the fuel reactor and CO2concentration of the exit gas from the air reactor are degreased.Carbon conversion rate and gasification efficiency are increased by increasing temperature and H2production at 870℃reaches the highest rate.Scanning electron microscopy(SEM),X-ray diffraction(XRD)and BET-surface area tests have been used to characterize fresh and reacted oxygen carrier particles.The results display that the oxygen carrier activity is not declined and the specific surface area of the oxygen carrier particles is not decreased significantly.The aim of this research is to design and operate a 10 kW hot chemical-looping gasification ( CLG) unit using Fe2 O3/Al2 O3 as an oxygen carrier and saw dust as a fuel. The effect of the operation temperature on gas composition in the air reactor and the fuel reactor, and the carbon conversion of biomass to CO2 and CO in the fuel reactor have been experimentally studied. A total 60 h run has been obtained with the same batch of oxygen carrier of iron oxide supported with alumina. The results show that CO and H2 concentrations are increased with increasing temperature in the fuel reactor. It is also found that with increasing fuel reactor temperature, both the amount of residual char in the fuel reactor and CO2 concentration of the exit gas from the air reactor are degreased. Carbon conversion rate and gasification efficiency are increased by increasing temperature and H2 production at 870 ℃reaches the highest rate. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and BET-surface area tests have been used to characterize fresh and reacted oxygen carrier particles. The results display that the oxygen carrier activity is not declined and the specific surface area of the oxygen carrier particles is not decreased significantly.

关 键 词:chemical-looping gasification hot model BIOMASS Fe2O3/Al2O3 dual circulating fluidized bed 

分 类 号:O[理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象