维修性先验信息的融合方法  被引量:14

Fusion method of prior maintainability information

在线阅读下载全文

作  者:徐廷学[1] 刘勇[2] 赵建忠[1] 韩云涛[2] 

机构地区:[1]海军航空工程学院二系,山东烟台264001 [2]海军航空工程学院接改装训练大队,山东烟台264001

出  处:《系统工程与电子技术》2014年第9期1887-1892,共6页Systems Engineering and Electronics

基  金:航空科学基金(20085584010)资助课题

摘  要:在利用Bayes小子样方法进行维修性指标验证时,针对维修性先验信息与现场维修信息为异总体的可能性较大的问题,分别建立了前期试验阶段维修时间信息向现场试验信息折合的内积模型和相似装备维修时间信息向待评装备维修时间信息折合的线性模型。采用随机加权法将先验信息转换为先验分布,并以现场信息为基准,根据各先验信息与现场信息分布模型中均值参数的差异程度来确定各先验分布的权重,然后通过计算综合先验分布与假设的正态分布的概率密度误差,对其融合后为正态分布的假设进行了检验,同时也提出了准确计算分布模型参数的方法。对某舰船装备维修性先验信息的折合与融合的实例表明了方法的有效性。In the maintainability index verification by the Bayesian small sample method,to solve the prob-lem that the prior maintainability information and on-site repair information are very likely different populations, the inner product model that the repair time information in the prior test stage converts into on-site repair infor-mation and the linear model that the similar equipment repair time information converts into that of the equipment which is ready to be evaluated are established.The random weighting method is used to convert a piece of prior information into a prior distribution.With the on-site information being considered as the stand-ard,and according to the discrepancy degree between the mean parameter of each prior information distribution and that of the on-site information distribution model,the weight of the prior distribution is determined.Then by calculating the probability density errors between the integrated prior distribution and the hypothetic normal distribution,the hypothesis that the fused integrated prior distribution is normal distribution is tested,and the method to accurately calculate the distribution parameters is also put forward.Prior maintainability information conversion and fusion of some ship equipment shows that the method is effective.

关 键 词:维修性 信息折合 先验分布 融合 

分 类 号:TJ610.7[兵器科学与技术—武器系统与运用工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象