检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州工业学院电子信息工程系,甘肃兰州730050 [2]兰州工业学院软件工程系,甘肃兰州730050
出 处:《计算机应用与软件》2014年第9期184-186,271,共4页Computer Applications and Software
摘 要:为了提高线性回归分类LRC(Linear Regression Classification)算法的鲁棒性,提出一种基于Fisher准则改进的线性判别回归分类算法。首先根据Fisher准则最大化类间重建误差与类内重建误差的比值,为LRC找到最优投影矩阵;然后利用最优投影矩阵将训练图像及测试图像投影到各个类的特征子空间;最后,计算出测试图像与各个训练图像之间的欧氏距离,并利用K-近邻分类器完成人脸的识别。在FERET和AR人脸数据库上的实验验证了本文算法的有效性。实验结果表明,相比其他回归分类算法,该算法取得了更好的识别效果。To improve the robustness of linear regression classification classification algorithm which is improved based on Fisher criterion. First, (LRC) algorithm, we propose a linear discriminant regression it maximises the ratio of between-class reconstruction error and within-class reconstruction error according to Fisher criterion so as to find the optimal projection matrix for LRC. Then it makes use of the optimal projection matrix to project all training and testing images to subspace of every class. Finally, it computes Euclidean distances between the testing images and each training image and uses K-nearest neighbour classifier to finish face recognition. The effectiveness of the proposed algorithm is verified by experiment on FERET and AR face databases. Experimental results show that the proposed algorithm achieves better recognition effect compared with other regression classification approaches.
关 键 词:人脸识别 FISHER准则 线性判别 线性回归分类 K-近邻分类器
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222