检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安工程大学电子信息学院,陕西西安710048
出 处:《西安工程大学学报》2014年第4期491-495,共5页Journal of Xi’an Polytechnic University
基 金:西安工程大学博士科研启动基金资助项目(BS1314)
摘 要:为了改进噪声鲁棒性和定位准确性,利用各向异性高斯方向导数滤波器,提出多方向角点检测算法.该算法利用一组各向异性高斯方向导数滤波器对输入图像进行卷积处理得到各个方向的滤波器响应.对于每个像素点,利用它与周围邻近像素点的滤波器响应的相关信息构造局部自相关矩阵,然后根据自相关矩阵归一化特征值及像素点处各方向滤波器响应,作阈值处理和非极大值抑制处理判定像素点是否为角点.实验结果表明,在无噪声和噪声的条件下,提出的检测方法与各向同性高斯核函数的Harris算法相比,配准角点数均提高6.0%左右,具有更好的检测性能.A multi-directional corner detector using the anisotropic Gaussian directional derivative filters is proposed to improve the noise-robustness and the localization accuracy .T he proposed algorithm first uses a set of anisotropic Gaussian directional derivative filters to smooth the input image .For each pixel , its filter responses and those of its neighborhood are used to construct the auto-correlation matrix ,then a corner measure combing the normalized eigenvalues and the responses at the pixel is calculated and threshold and non-maximum suppression are used to decide corners .The experiments show that ,com-pared with Harris algorithms ,the correct detected corner numbers by the proposed algorithm increase by about 6.0% for both noiseless and noise images .
关 键 词:角点检测 Harris检测算法 各向异性高斯方向导数滤波器 自相关矩阵
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44