检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵建华[1,2]
机构地区:[1]西北工业大学计算机学院,陕西西安710072 [2]商洛学院数学与计算机应用学院,陕西商洛726000
出 处:《西华大学学报(自然科学版)》2014年第5期1-6,共6页Journal of Xihua University:Natural Science Edition
基 金:陕西省教育厅科研计划项目(12JK0748);商洛学院科研基金(10sky1001)
摘 要:为提高半监督分类的性能,提出一种安全的基于分歧的半监督分类算法Safe Co-SSC。通过有标记样本训练3个有监督分类器,利用无标记样本的信息增加分类器的差异性,采取3个分类器加权投票的策略实现对无标记样本的伪标记;对伪标记样本进行二次验证,选用能使分类器误差减小的新增标记样本扩充标记样本集。保证新样本的添加既减小了分类器的分类误差,又提高了分类器的分歧性。对UCI数据集进行分类实验的结果表明,该算法具有较高的分类率和样本标记率。In order to improve the performance of semi-supervised classifier , a safe disagreement-based semi-supervised classifica-tion algorithm named Safe Co-SSC was proposed .The limited labeled samples were divided into three equal training sets and used to train three classifiers by a supervised learning algorithm .A large number of unlabeled samples were used to increase the differences be-tween the classifiers and the weighted voting strategy was used to achieve pseudo -labeled for unlabeled samples .Passing through sec-ondary verification, the ones making classifier error minimum were added into the labeled samples set .Finally, the experiment was car-ried out on the UCI data set , the results showed that the proposed algorithm had higher classification rate and sample labeling rate .
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117